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I t’s funny introducing Circuit Cellar’s 400th issue. By most measures, I’m still 
new at this magazine. I’ve been working here a little over a year, and have, as 
of this publication, been the Editor-in-Chief of Circuit Cellar for 14 of its issues. 
In no way is this milestone—four hundred issues!—my accomplishment.

Nor, for that matter, is any issue I’ve been a part of “my” accomplishment. 
I’m the guy at a fancy restaurant who, after a team of highly trained expert chefs 
prepare a dish, makes sure there are no unsightly food smears on the plate before 
it goes to the table. Circuit Cellar’s quality, success, and longevity rests on the 
shoulders of its tireless writers, some of whom have been with the magazine since 
its inception. Each issue feels like a low-grade marathon, and I have the easy job. I 
can’t fathom doing 400 of these, as some members of our staff have done.

On the heels of a well-received article he wrote, Steve Ciarcia was hired by BYTE 
magazine in 1977 to write a column called “Ciarcia’s Circuit Cellar,” which presented 
projects he was working on. The column grew in popularity until Steve decided in 
1979 to start a company called Micromint that would sell kits based on the projects 
he wrote about. These two ventures were a hit, and Steve enlisted the help of Ed 
Nisley, Ken Davidson, and Jeff Bachiochi to contribute their technical expertise to the 
column and its projects. When BYTE’s editorial direction changed a few years after 
they were bought by McGraw-Hill, Steve founded his own magazine—this one—in 
1988. (This means that we are also celebrating Circuit Cellar’s 35th anniversary this 
year.) Many of the folks from BYTE followed Steve in this new endeavor. The Circuit 
Cellar magazine team in those days consisted of Steve Ciarcia, Ken Davidson, Jeff 
Bachiochi, Ed Nisley, Dan Rodrigues, Jeannette Dojan (who later became Steve’s 
wife), Tom Cantrell, Dave Tweed, and many others. We still proudly count Jeff, Ken, 
and Dave among our staff. 

I ran into a wrinkle in this story during my research. Steve posits in his account of 
Circuit Cellar’s origins and history [1] that it was Dan Rodrigues who first suggested 
to Steve, upon hearing of BYTE’s redirection, that they start their own magazine. But 
a few months ago, I received an e-mail from Bob Paddock, a former Circuit Cellar 
writer who, in the ‘90s and ‘00s, was a part of the “Ask Us” group for Circuit Cellar 
Online, and who also had his own column for a while. Bob claims that a comment 
he made to Steve started the whole thing off. He wrote: “I said to [Steve], ‘What we 
really need is a magazine for hardware, like Dr. Dobb’s Journal is for software.‘ He 
responded, ‘Good idea,‘ and over a year or so later the first issue of Circuit Cellar 
magazine was a reality.“ I think both accounts are true, for the record. In Steve’s 
own telling, he relied on the help of numerous other “hardware nerds” (Bob’s term), 
and I don’t doubt that, with the unwelcome changes taking place at BYTE, multiple 
of these clever engineer-writers were thinking the same thing.

However it happened, we’ve come full circle. Because I wouldn’t be typing these 
words if it weren’t for the decades of clever design, fascinating articles, and sheer 
engineering fun that have made Circuit Cellar what it is today. Nor would any of us 
be doing this if it weren’t for our readers, who are, more often than not, experts in 
an increasingly sophisticated technical field who still find joy or knowledge in this 
magazine’s pages. To borrow Steve’s phrase, “we truly have a non-superficial 
readership.” So, yes, it feels funny to introduce 
the 400th edition of Circuit Cellar. But it is no less 
an honor, a privilege, and a delight. I’m grateful 
to the Circuit Cellar team and to everyone 
reading. Please enjoy this special issue. 

[1] Steve Ciarcia, "Wondering How It All Began?" Circuit Cellar's
25th Anniversary Edition.

Circuit Cellar’s 400th Issue
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H olograms are a common fixture 
in science fiction, yet remain 
somewhat of a unicorn for the 
tech world. While building a “real” 

hologram might be out of reach for today’s 
technology, we can still strap a horn to a 
metaphorical horse and make it feel pretty. 
Persistence of Vision (POV) displays offer one 
method by utilizing a psychological trick to 
construct floating images out of light.

Persistence of Vision refers to the brain’s 
tendency to perceive light for a brief period 
after it stops entering the eye. Through clever 
engineering, this effect can be exploited to 
“paint” light onto thin air. A quickly rotating 
series of LEDs appear to the brain as a full 
circle, for example, and by changing the colors 
emitted by the LEDs, we can create the illusion 
of floating holographic images. These images 
are ghostly, beautiful, and mesmerizing—
perfect for advertising, art installations, or 
product presentations (Figure 1).

The unique design challenges associated 
with creating a high-speed, fully wireless (both 
for power and communication), and low-budget 

POV display led us down many interesting 
paths in a variety of engineering disciplines. 
Our electronics harnessed the Raspberry PI 
Pico microcontroller (MCU) to drive the display, 
and we created custom printed circuit boards 
(PCBs) to house the microcontroller, LEDs, and 
accompanying electronics. The whole system 
is powered inductively, removing the need for 
any wires. Our software consists of embedded 
C programming for high-speed operation of 
the Pico, along with a Python TCP client to send 
images to the display over Wi-Fi. Finally, our 
mechanical design uses 3D-printed components 
to enable safe, high-RPM operation.

ELECTRICAL OVERVIEW
In a system experiencing high 

accelerations, PCBs are king. Made from high-
strength PTFE substrate, these boards can 
stand many thousands of Gs, and soldered 
connections are extremely resilient to the 
characteristic forces of a POV display. They are 
also lightweight and slightly flexible, making 
them perfect for our use case. Figure 2 shows 
the two PCBs we made for our design.

By 
Michael Crum, Joseph Horwitz,  
and Rabail Makhdoom

Paint Light Into Ethereal Floating Images Paint Light Into Ethereal Floating Images 
Using a Raspberry Pi PicoUsing a Raspberry Pi Pico

Persistence of vision (POV) is the human brain’s ability to perceive light for 
a brief period after it stops entering the eye. These three Cornell University 
students exploited the POV phenomenon to create the illusion of holographic 
images by changing the colors of a rapidly rotating series of LEDs.

FIGURE 1
Three examples of the holographic persistence-of-vision (POV) 
display. (Note the Circuit Cellar logo in the center.)
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We call the first PCB “the arm,” shown lit 
up in Figure 3. The arm holds 40 surface-
mounted APA102 LEDs, and provides standard 
0.1-inch headers for interfacing with the LEDs. 
We chose the APA102 LEDs because they use 
a two-wire SPI protocol to communicate with 
the control board. This allows communication 
rates of up to 20MHz, more than fast 
enough for our application. We previously 
experimented with the popular WS2812B 
LEDs, but these LEDs are capped at a 1kHz 
refresh rate due to their single-wire protocol. 
This would limit the radial resolution of our 
display. We added an M3-sized hole on each 
end of the arm, one to connect the arm to the 
rest of the rotor, and one to attach weights to 
balance the system. 

The second PCB, shown in Figure 4 is 
the control board. The control board holds 
the Pico W and the power/logic electronics 
to facilitate communication with the LEDs 
and Hall effect sensor. The Pico W uses 3.3V 
logic levels, while the APA102 LEDs expect 5V 
logic. To remedy this disparity, we included 
a 74AHCT125 Logic Level shifter. This shifter 
converts our 3.3V signal to 5V, and is fast 
enough to deal with our 20MHz SPI signals. A 
47µF decoupling capacitor is placed across the 

FIGURE 2
Our PCBs laid out in KiCad. Top: 
"The arm," which holds 40 surface-
mounted APA102 LEDs. Bottom: The 
control board, which holds the Pico W 
and the power/logic electronics.

FIGURE 4
The control board PCB and 
schematic. All PCBs were designed 
using KiCad, an open-source ECAD 
software. 

FIGURE 3
"The arm" mounted and with LEDs 
lit.
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power supply, which is especially important 
when dealing with the rapidly changing power 
requirements of the LEDs. We also added a 
Schottky diode between the power rail and the 
Pico’s VSYS pin. This diode allows the board 
to simultaneously take power from screw 
terminals and the Pico’s onboard USB without 
damaging the Pico or the power supply. 

To facilitate programming, we connected 
a push button between the RUN pin and 
ground. Pulling the RUN pin down causes the 
Pico to enter boot-select mode and appear as 
a programmable USB device. Finally, we wired 
the Hall effect sensor to a GPIO pin of the Pico 
with a 10kΩ pull-up resistor. Note that the 
sensor is active low.

One of the key design choices for a POV 
display is how to power the rotor. Because 
it spins 360 degrees, wires cannot be safely 
routed between the stationary stand and mobile 
rotor. There are three traditional approaches 
to this issue: a slip ring, an onboard battery, 
and an inductive power supply. 

Slip rings use brushes and contacts to create 
connections that can “slip” past each other and 
rotate. However, they are notoriously unreliable, 
cause sparks under high load, wear over time, 
and add friction. An onboard battery adds weight 
to the rotor and is a potential safety concern at 
high speed. Finally, there are inductive power 
supplies. Due to the widespread adoption of 
wireless charging technology, inductive coils are 
readily available online. They are frictionless, 
robust, and are by far the “slickest” solution, 
if that matters (let’s be honest—it does). We 
picked up a $25 system on Amazon complete 
with a 5V level converter hardware, shown 
installed on the arm in Figure 5.

Finally, we need to spin the rotor. We used 
a spare motor found around the lab, but 
most motors will do. Our motor used 18W 
to achieve 1,800rpm(equivalent to 30fps), so 
look for something in that range if you build 
this project yourself. This motor is powered 
by a motor speed controller built from a 
second PI Pico and an HBridge. This allowed 
us to control the motor speed precisely, but a 
bench supply would also suffice.

MECHANICAL OVERVIEW
We started the design process by working 

on the rotor. As mentioned in the previous 
section, the PCBs, themselves, were included 
in the mechanical construction of the rotor. 
To supplement the PCBs, we needed to 
create a superstructure that holds the PCBs 
together and connects them to the motor 
shaft. This structure also served to mount 
the inductive coil. Along with the functional 
requirements, we want to keep weight to a 
minimum and make the design modular so 
that design iterations are faster.

FIGURE 5
Inductive coil with 5V level converter 
hardware mounted on the bottom of 
"the arm." The coil powers the rotor, 
which spins 360 degrees.

FIGURE 6
The fully assembled rotor.
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Our design is 3D printed with minimal 
infill to reduce weight. It is only a couple 
of millimeters thick, and is designed to 
use the PCBs to supplement its strength. 
Components are connected using M3 screws 
that are threaded directly into the PLA. With 
proper print settings, these connections are 
remarkably strong, and more than enough for 
the mostly lateral load of this application.

To interface with the motor, we created an 
adapter that fits the motor shaft on one end 
and supplies a 1” square hole pattern on the 
other. We made this a separate component, 
so that we could quickly iterate designs in 
case the fit on the motor was too loose. The 
final product is shown in Figure 6.

The next step was creating a stand to 
house the motor and inductive coil. The 
inductive coil has a specific range in which it 
can operate safely, and we used the stand to 
enforce this distance. The stand also allows 
us to clamp the system to a table for testing.

The design is split into two parts to 
reduce reprinting time. All parts are printed 
in PLA with 20% infill, which was plenty 
strong enough for the application. PLA is not 
ferromagnetic, which means that it does not 
interfere with the inductive power supply. The 
motor mount is shown in Figure 7.

SOFTWARE OVERVIEW
Using just 40 independently addressable 

LEDs, we were able to create the illusion of 
12,000 pixels at over 30fps. The display is 26” 
in diameter, and updates over Wi-Fi from our 
custom Python client.

To display an image, we first use a Python 
program running on a laptop to convert an 
image into the display’s polar coordinate 
system. This data gets sent over TCP to the 
Pico W, where it is prepared to be displayed. 
We created a browser-based GUI to streamline 
the process, accepting images or GIFs and 
handling the full transmission cycle.

The Pico measures its rotational speed 
using a Hall effect sensor and a magnet 
mounted to the stand. With this information, 
it displays the pixels for the “slice” of the 
image corresponding to its current position 
in the rotation.

The MCU code executes two processes, 
each running on its own core. One process 
handles TCP exchanges and writes the image 
array with new pixel data. The other process 
reads the image array and updates the LEDs 
to maintain a complete image. By using 
both cores, we can concurrently receive TCP 
messages and control the LED strip, allowing 
for seamless operation.

Python Code: Our Python code creates 
an HTTP server that allows users to submit 
images to be shown on the display. The front 

end (shown in Figure 8) uses simple Javascript 
to POST the user’s image to the server, where 
the server downloads and caches it.

Raster images are typically displayed on 
rectangular screens, utilizing a rectangular 
array of pixels. POV displays are unique in the 
radial arrangement of their pixels, meaning 
we must pre-process the images from 
the canonical rectangular system into the 
display’s native polar coordinates. 

Our approach is virtually overlaying 
the location of the display’s pixels over the 
rectangular image. We chose to center the 
circle and have its diameter be the same as 
the smallest dimension of the source image. 
This focuses on the central parts of the image 
and maximizes the amount of the display 
utilized. Any pixels outside the circle defined 
by this radius are ignored. For each of the 
pixels on the display, the closest pixel of the 
rectangular image is selected, and that color 
is used for the radial representation.

When processing the image, we must 
decide on a resolution. Because the number 
of LEDs on the arm is physically determined, 

FIGURE 7
The final motor mount.

FIGURE 8
The front end for the Python code. It uses simple Javascript to POST the user's image to the server, where 
the server downloads and caches it.
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we can only control the angular resolution. 
This is the number of times LEDs must change 
color while traveling in one rotation. While 
higher angular resolution results in a clearer 
image, it also strains the processing time of 
the Pico and the refresh rate of the LEDs. Our 
experimentation showed diminishing returns 
with >300 LED changes per rotation, so we 
stuck with that resolution for our final results.

The pixels are then pushed onto an array 
that stores the polar image. The array stores 
a pixel as (THETA, R, COLOR) rather than the 
traditional (X, Y, COLOR). Theta represents 
which angle of the arm contains the pixel, R 
represents the distance from the center of 
the arm in terms of the number of LEDs, and 
COLOR is an RGB triple.

Figure 9 shows what the processed images 

# Sample the image at each point that an LED will update at
# We calculate this point in polar space, convert it to rectangular, then sample the image at 
that point
# The results are stored in rad_img, which is a polar representation. Essentially (theta, r)
for t in range(DIVISIONS_PER_ROTATION):
    for l in range(NUM_LEDS):
        # What angle are we looking at (in radians)
        theta = t * ((2 * numpy.pi) / DIVISIONS_PER_ROTATION) + offset
        # How far out are we (from 0 to 1)
        r = l / NUM_LEDS

        x_raw = numpy.cos(theta) * r
        y_raw = numpy.sin(theta) * r

        # Get the rectangular coord for the current polar coord, centered on the image and 
going to the edges
        x = numpy.interp(
            x_raw, [-1, 1], [(width / 2) - (min_dim / 2), (width / 2) + (min_dim / 2)])
        y = numpy.interp(
            y_raw, [-1, 1], [(height / 2) - (min_dim / 2), (height / 2) + (min_dim / 2)])

        x = int(x)
        y = int(y)

        assert x < width and x > 0
        assert y < height and y > 0

        rad_img[t][l] = img_array_np[x][y]

LISTING 1 
The Python code for sampling an image in polar coordinates.

FIGURE 9
A test image produced at angular resolutions of 60, 90, and 180 LED changes per rotation. Angular resolution is the number of times LEDs must change color while traveling 
in one rotation.
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look like at various radial resolutions, 
and Listing 1 shows the Python code 
for our implementation. We were able to 
run up to 300 LED changes per rotation, 
but reasonable images can be generated 
with 180 changes or less. 

Once the image has been 
processed, we must send it to the Pico. 
This is handled using a TCP connection 
created by the Socket Python module. 
A laptop running the Python code 
presents itself as a TCP server, to 
which the Pico automatically connects. 
Once the connection is established, 
we can send our image as a stream of 
bytes to the Pico.

Pico Code: The Raspberry Pi 
Foundation provides an excellent SDK 
for programming the Pico, including all 
the build tools necessary for deploying 
code, and a collection of drivers for the 
various peripherals of the RP2040. Our 
work makes extensive use of this SDK, 
along with the popular Protothreads 
threading library for concurrent 
programming [1].

The RP2040 included on the Pico is 
dual-core processor, which is perfect for 
our use case. The display can be broken 
down into two high-level components: 
networking (talking to the laptop over 
Wi-Fi); and control (controlling the 
LEDs and ensuring timing consistency). 
Running each component on a separate 
core separates the interrupt-heavy and 
asynchronous requirements of network 
programming from the timing critical 

and processor-greedy requirements of 
peripheral control. Additionally, because 
the control logic only reads data from 
shared memory (never writing) there is 
no concern over race conditions.

Core zero is responsible for the 
networking code, and starts life 
by initializing its peripherals. The 
networking on the Pico W is handled by 
an onboard CYW43439 chip, which has 
a handy driver packaged into the Pico 
SDK. After initializing the RP2040’s 
GPIO pins, the CYW43439 driver is 
initialized and used to connect to a 
provided Wi-Fi SSID. We then register 
our custom interrupt handlers to 
manage TCP-related messages 
received by the Wi-Fi chip. 

When the interrupt signifying a TCP 
transmission is triggered, data is fed 
to the interrupt as a packet of bytes 
(Listing 2). While TCP does guarantee 
the delivery of data, it does not 
guarantee how many packets the data 
will be formatted into when sent. This 
makes it the developer’s responsibility 
to ensure that all data is received, even 
if it is broken into many packets. This 
problem can be handled by including a 
header with the message length, but 
our packet size is always the same 
(whatever is required by the resolution 
of the image) and can be agreed upon 
before the code is flashed to the Pico. 

Because the size of an image is 
known, the Pico continues listening for 
packets until enough data has been 

static int dump_bytes(const uint8_t *bptr, uint32_t len)
{
    unsigned int led_i;
    unsigned int rot_i;
    unsigned char rgb_i;
    uint8_t x;

    for (unsigned int i = 0; i < len; i++)
    {
        x = bptr[i];
        rgb_i = arr_i % 3;
        led_i = (arr_i / 3) % LED_NUM;
        rot_i = (arr_i / (LED_NUM * 3)) % ROTATIONS;
        led_array[rot_i][led_i][rgb_i] = x;
        arr_i++;
    }
    return rot_i + 1;
}

LISTING 2
The interrupt handler for TCP packets.
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received. It then rebuilds the 3D polar array 
that represents the image, identical to the 
array sent from the laptop’s Python client. 
This array is stored in memory accessible to 
both cores, making it available to core one’s 
display logic.

Core one tackles the issue of controlling 
the LEDs. The core first initializes the relevant 
GPIO pins for SPI communication, then 
outputs a test pattern to the LEDs as a visual 
indicator that initialization was successful. 
It also registers an interrupt handler for the 
rising edge of a Hall effect sensor, which is 
explained below.

Using the image information supplied 
by core zero, the image is almost ready 
to be displayed. We still need one more 
piece of information: the current position 
of the arm. To display a steady image, we 
need to know what “slice” of the image 
is currently being displayed. Instead of 
trying to measure the position of the arm 
directly, we use some mathematical trickery 
to form an estimate. By using a Hall effect 
sensor to determine when the arm passes 
a magnet mounted to the base, we get a 
sub-millisecond measurement of the period 
of the arm’s rotation, and stable a zero 
point in the viewer’s frame of reference. 
Given that the arm is rotating at a constant 
speed, the amount of time that each “slice” 
of the image should be displayed is the 
period divided by the number of pixels 
per rotation. This is easy to keep track of 
using an MCU, and we accomplished it using 
the yield functionality of the Protothreads 
library [1]. We determined the yield time 
using the following equation:

yieldtime = (period of rotation/changes per 
rotations) - LED update time

The Hall effect sensor we chose is active 
low and pulls a GPIO pin to ground whenever 
the south pole of a magnet gets close. We 
set up a falling edge interrupt on the pin, 
triggering whenever the sensor moves past 
the stationary magnet on the motor mount. 
When the interrupt is triggered, the period 
of rotation is calculated by subtracting the 
last activation from the current time. We 
also check that the period is a reasonable 
value (>10,000µs), which helps us reject 
any high-frequency false positives. We also 
indicate that we have hit our zero point by 
setting the relevant flag.

Finally, we can update the LEDs! We 
chose APA102 LEDs because they use the 
high-speed SPI protocol to communicate. 
A common pitfall of POV display design is 
attempting to use the ubiquitous WS2812b 
LEDs (also known as Adafruit NeoPixels). 

FIGURE 10 
Six different holographic images shown on the display.
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These LEDs use a single wire control protocol 
and don’t have the required bandwidth for 
high speed refreshes. The SPI interface has 
the additional benefit of allowing us to use the 
Pico’s SPI peripheral to simplify the driver. 
The LEDs expect packets that are broken into 
“frames” of 32 bits. Each message begins 
with a start frame of 32 0's and ends with an 
end frame of 32 1’s. In between, each frame 
represents the data for a single LED in the 
strip. A LED frame starts with 111, then is 
followed by 5 bits representing the brightness 
of the LED. This is followed by 8 bits for each 
of blue, green, and red, giving 256 values for 
each.

The LEDs are wired in series, with the SCK 
and MOSI lines of the previous LED leading 
into the next. When an LED receives a packet, 
it updates its state, strips the first LED frame 
off the packet, and then shifts the new packet 
out of its output SCK and MOSI lines. By doing 
so the entire strip can be updated from a 
single message sent to the first LED.

RESULTS OF THE DESIGN
Various holographic images on the POV 

display are shown in Figure 10. We can 
quantify the performance of our display in 
terms of several metrics:

1. Resolution: Rotational displays operate 
slightly differently than traditional grid-based 
displays. Each “pixel” is actually an arc, and 
its position is defined in terms of radius and 
angle rather than x and y. For a POV display, 
the resolution on the radius is the number of 
LEDs on the arm, so 40 in our case. The angular 
resolution depends on how many times the 
LEDs update per rotation. We experimented 
and determined that 300 updates produced 
vivid images without overwhelming our MCU. 
Multiplying these quantities gives 12,000 
pixels, which is much higher than comparable 
DIY systems.

2. Size: POV displays become exponentially 
more complicated as they grow larger. Large 
radius results in higher acceleration, more 
LEDs required for equivalent pixel density, and 
more power required. Many POV projects are 
under 6” in diameter for this reason. Because 
our goal was to create a visually impressive 
product, we decided to aim for around the 
size of a large poster. This resulted in a 26” 
diameter display. This posed many technical 
challenges, but the result is absolutely 
stunning.

3. Image Stability: Due to the high speed 
of the system and the noisy signals generated 
by the Hall effect sensor, it can be difficult 
to determine the exact rotational frequency. 
This can cause the image to jitter or process 
around the display. Our display dealt with 
these issues remarkably, with almost no 

visible jitter. Any noise was constrained to 
within one angular pixel, or under 2 degrees.

4. Usability: Our design emphasizes 
usability and consistency. Good build quality 
ensures that repeated use doesn’t cause 
incremental damage, decreasing the life 
span. The system is powered by a single wall 
outlet, so no specialized hardware is required. 
It is resilient to fluctuations in motor speed, 
so replacement or modification is easy. The 
custom Python interface allows for use of 
the display with any image you choose, 
and updates can be sent over Wi-Fi without 
slowing down the display.

All the code and design files for this project 
are available on GitHub [2]. See Circuit Cellar’s 
Article Materials and Resources webpage.

FUTURE WORK AND 
IMPROVEMENTS

One notable issue with our display is the 
spacing between the pixels. Because of the 
physical requirements for soldering the arm, 
there are small gaps between the LEDs. This 
causes circular interruptions in the image, 
and could be remedied by using two staggered 
rows of LEDs.

We also hope to improve the interface 
for transmitting images and video. It would 
be interesting to write a display driver that 
allows the display to mirror a computer 
screen. This would make the display interface 
even more intuitive.
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I n Part 1 of this article series I discussed 
basic concepts regarding full-stack 
web development and backend/front-
end web development. I also discussed 

a basic backend workflow for working with 
microcontroller (MCU)-based web clients. I 
explained how to set up a basic Linux web 
server with a database by installing the LAMP 
(Linux, Apache, MySQL/MariaDB and PHP) 
backend technology stack on a Raspberry Pi 
board.

I presented an Espressif ESP8266 MCU-
based data logger with a Bosch Sensortec 
BME688 Environmental Sensor, as an example 
of an MCU-based web client. This data logger 
periodically sends sensor readings via Hyper 
Text Transfer Protocol (HTTP) POST requests 
to the web server. I explained as well a basic 
PHP script that runs on the server to attend the 
POST requests from the MCU web client. The 
script retrieves the sensor data that comes 
in the HTTP request’s body and prepares a 
String Query Language (SQL) query that can 
be used store the values in a database. 

If you are not familiar with the concepts 
described above, please refer to Part 1 of this 
article series (“Backend Web Development for 
MCU Clients,” Circuit Cellar 399, October, 
2023) so you can follow the topics presented 
here [1]. Here, in Part 2 of this article series, I 
discuss the creation of a MariaDB database on 
the server to store the remote sensor readings. 
I explain basic SQL queries to perform 

diverse operations with the database, and I 
also discuss a second PHP script to query the 
database to retrieve previously stored data. 

CREATING THE DATABASE 
MariaDB is a SQL-based relational 

database, so to be able to interact with it, 
you must have a basic understanding of SQL. 
What is SQL? SQL is a standard language for 
storing, manipulating and retrieving data 
from databases. With SQL you execute queries 
against the database to store and retrieve 
data, update and delete records, create new 
databases and new tables, create new users, 
set access permissions, and so on. The SQL 
language is intuitive and easy to understand. 
Once you get acquainted with the most simple 
queries, using a database server becomes a 
straightforward activity.

Listing 1 shows the procedure to create 
a database, a table, and a user with all the 
necessary access privileges. From Part 1, you 
should have already set up your Linux-based 
web server with a MariaDB/MySQL database. 
On your Linux server, open a terminal window 
and run the command from line 5 to access 
MariaDB. Note that you can execute “sudo 
mysql” instead, to the same end. Next, run 
the SQL query in line 8 to list all currently 
available databases. From now on, remember 
to end all SQL queries with a semicolon (“;”). 
MariaDB won’t execute the query until you 
type the semicolon.

By 
Raul Alvarez-Torrico

Part 2: Querying a Database in PHPPart 2: Querying a Database in PHP

Proficiency with servers, HTTP, and backend technologies are 
valuable skills for the embedded systems professional. In Part 2 
of this three-part article series, Raul steps us through creating a 
MariaDB database, how to use SQL queries to store data in the 
database with a slightly modified PHP script, and how to use a 
second PHP script to extract data from the database and send it 
back to a web client. 
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Run line 11 to create a new database named “logger_db.” 
You could use any other name for your database, but it is 
advisable to use the same names described here, to follow 
all procedures avoiding potential confusion. Run line 14 to 
select the newly created database. From now on, all issued 
SQL queries will apply to the selected database. 

Now, we need to create a table in the database to store the 
data. To do so, in the command line write and run the query 
shown in lines 17-23. The indentation tabs are optional. To 
break the query in many lines, as it is shown in the listing, just 
hit <Enter> to break each line. Remember that SQL queries 
only execute when they are ended with a semicolon; thus, 

LISTING 1
SQL queries to create a database, a table, and a user.

1 # Creating a MariaDB/MySQL Database, Table and User
2 
3 ## Create a Database and a Table
4 ### Start MariaDB:
5     sudo mariadb
6 
7 ### List all available databases:
8     SHOW databases;
9 
10 ### Create a database named ‘logger_db’:
11     CREATE DATABASE logger_db; 
12 
13 ### Select the created database:
14     USE logger_db;
15 
16 ### In the database, create a table named ‘sensors’:
17     CREATE TABLE sensors (
18         unix_t INT(11),
19         gas_res DECIMAL(8,2),
20         pressure DECIMAL(8,2),
21         temperature DECIMAL(5,2),
22         rel_hum DECIMAL(5,2),
23         id INT UNSIGNED NOT NULL AUTO_INCREMENT KEY);
24     
25 ### As a test, insert manually a row in the table
26     INSERT INTO sensors (unix_t, gas_res, pressure, temperature, rel_hum)
27     VALUES(‘1688160823’, ‘50178.01’, ‘749.45’, ‘25.74’, ‘45.59’);
28 
29 ### Show all rows in the table
30     SELECT * FROM sensors; 
31     
32 ### Empty the table (delete all rows without erasing the table). 
33     TRUNCATE TABLE sensors;
34     
35 ## Create a New MariaDB User. With the user name ‘user1’ and password ‘password1’:
36     CREATE USER ‘user1’@localhost IDENTIFIED BY ‘password1’;
37 
38 ### Check user status:
39     SELECT User FROM mysql.user;
40 
41 ### Grant Privileges to the new MariaDB User
42     GRANT ALL PRIVILEGES ON logger_db.sensors TO ‘user1’@localhost IDENTIFIED BY 
‘password1’;
43 
44 ### Refresh privileges:
45     FLUSH PRIVILEGES;
46 
47 ### Verify permissions for the new user:
48     SHOW GRANTS FOR ‘user1’@localhost;
49 
50 ### Remove MariaDB User Account:
51     DROP USER ‘user1’@localhost;
52 
53 ### Exit MariaDB:
54     exit
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this query will execute only after you type the 
semicolon in the last line and hit <Enter>.

What does this SQL query do? It creates a 
new table named “sensors” in the currently 
selected database (“logger_db”). This table has 

six columns: “unix_t,” “gas_res,” “pressure,” 
“temperature,” “rel_hum,” and “id.” The first 
column (“unix_t”) is of type INT (integer) with 
11 digits. The second column (“gas_res”) is of 
type DECIMAL with a precision of 8 significant 
digits and a scale of 2 decimal digits. This 
means that this column can store a maximum 
value up to 999999.99. The same logic applies 
to the next columns, except for the last one 
(“id”). The last column (line 23) serves as the 
primary key that will help to uniquely identify 
each data row in the table. This column is of 
type INT UNSIGNED. It can never be null, and 
it auto-increments with each new row that’s 
inserted in the table.

After the database table is created, run the 
SQL query from lines 26-27 to insert your first 
data row manually in the newly created table. 
The first parenthesis in this query contains 
the table column names, and the second 
parenthesis contains the corresponding values 
to be inserted in each column. Repeat if you 
want the same query many times, changing 
values to store additional rows. Next, run line 
30 to display all data rows already stored in 
the table. The asterisk (*) in this last query 

LISTING 2
Receiving CSV data in the server and storing them in the database.

1 <?php 
2     // Get the body (CSV string) from the incoming request
3     $csv = file_get_contents(‘php://input’); 
4 
5     $data_array = str_getcsv($csv); //Convert CSV to array
6 
7     if($data_array != null) {
8         $unix_t =   time(); //Read unix time (GMT) from server
9         
10         // Extract received remote values from array
11         $gas_res = $data_array[0]; 
12         $pressure = $data_array[1];
13         $temperature = $data_array[2];
14         $rel_hum = $data_array[3];
15 
16         // Build SQL query string for the database
17         $query = “INSERT INTO sensors(unix_t, gas_res, pressure, temperature, rel_hum) 
VALUES” . “(‘$unix_t’, ‘$gas_res’, ‘$pressure’, ‘$temperature’, ‘$rel_hum’)”;
18 
19         // Connect to the database
20         require_once ‘login.php’; // Include login information
21         $conn = new mysqli($server, $user, $password, $database);
22         if ($conn->connect_error) die($conn->connect_error);    
23 
24         // Query the database
25         $result = $conn->query($query);
26 
27         // If the query was unsuccessful...
28         if (!$result) echo “Query error: $query\n” . $conn->error . “\n”;
29         else echo “Data inserted into DB!\n”; // Send success message
30     }   
31 ?>

FIGURE 1
Listing all data from the "sensors" table.

php://input%E2%80%99
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simply means “all.” So, the query can be 
interpreted as follows: “Select and display 
all available rows from table sensors.” After 
running this query, in the terminal you will 
see listed all rows previously inserted in the 
table (Figure 1). If you want to get a fresh 
start with your database table, purge all 
data from the table by running line 33. The 
“TRUNCATE” query will empty the database 
table without erasing its structure. Now if you 
run line 30 again, you will get an empty table.

Next, we need to create a database user 
with all the necessary privileges to perform 
operations in the table. We accomplish this 
with the query from line 36. Before running 
this query, replace “user1” with your own user 
name, and “password1” with its corresponding 
password. After running line 36, run line 
39 to get all available users in the MariaDB 
database. You should see in that listing the 

user you just created. Going forward, run 
line 42 to grant all privileges that will allow 
the new user full control over the “sensors” 
table in the “logger_db” database. Here too, 
you must replace your own user name and 
password.

Run line 45 to reload the granted 
privileges, and run line 48 to verify that the 
user has received them. If for some reason 
you need to erase a user, run line 51 to do 
so. However, we need to keep the user we 
just created to access the database in the 
following examples. Finally, type “exit” to 
exit MariaDB (line 54). If you want to delve 
deeper into SQL, a suggested online tutorial 
[2] is available on the Circuit Cellar Article 
Materials and Resources webpage.

If you are new to the Linux terminal, 
interacting with a database from the command 
line can be a bit awkward at first, but it 

1 <?php // login.php
2   $host = ‘localhost’;  //Server host name or IP addres
3   $database = ‘logger_db’; // Database name
4   $user = ‘user1’; // Change for your own user name
5   $password = ‘password1’; //Change for your own password
6 ?>

LISTING 3
PHP script containing database login 
information.

www.BusBoard.com/CC
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pays off in the long run. When working with 
servers, sometimes the only way to access 
them is by using a remote SSH connection 
from a terminal window. There is, however, 
some Graphical User Interface (GUI) software 
to interact with databases. Arguably the most 
popular for MySQL/MariaDB databases is 
“phpMyAdmin” [3] (written in PHP). It allows 
you to interact with MariaDB/MySQL from a 
web browser window.

STORING DATA IN THE DATABASE
Now that we have a working database in 

our server, let’s store data in it using PHP. How 
we do this? Listing 2 shows the same PHP code 
I discussed in Part 1 of this article series [1], 
but this new version includes code lines 20-
29. These additional lines open a connection 
to the database, insert the received data in 
the database table, and check for possible 
errors. Let’s see how this works.

Line 20 acts in similar way to the 
“#include” C language preprocessor directive. 
It includes the “login.php” script, which 
defines four variables containing database 
login information, as shown in Listing 3. 
“$host” contains the host name or IP address 
of the database server. This will be usually 
“localhost” if the web server (where the PHP 
script is running) and the database server, 
both are running on the same computer. This 
is our case, and it generally is for most small 
to medium size web applications. “$database” 
contains the name of the database you want 
to access (“logger_db”), which is the database 
we created previously (see line 11 in Listing 1). 
“$user” and “$password” contain, respectively, 
the user name and password for the database 
user with the required access privileges. In this 
script, change the user name and password 

you chose when creating your database user 
(see lines 36, 42 from Listing 1).

Now let’s go back to Listing 2. Line 21 
opens a connection to the database using the 
login credentials from the “login.php” script. 
Next, line 22 checks for any errors from 
the previous step. If an error has occurred, 
the die() function will terminate the script 
execution and display an error message. 
If the connection was opened successfully, 
line 25 will submit to the database the SQL 
query prepared in line 17. If the query is 
unsuccessful, line 28 sends back to the web 
client an error message containing the query 
string (“$query”) and the connection error 
(“$conn->error”). Otherwise, a success 
message is sent instead.

To test the backend so far, follow these 
steps: First, in your web server’s root 
directory, create a subdirectory called 
“backend” and copy into it the “receive_csv.
php” and “login.php” files. We will be putting 
all server files inside this subdirectory. The 
root directory for Raspberry Pi servers or any 
other Debian/Ubuntu-based servers will be 
typically: “/var/www/html/”. So, the full path 
to our web application will be: “/var/www/
html/backend/”. Next, connect the ESP8266 
board to your PC, and upload the new version 
of the “esp8266_http_post_client.ino” Arduino 
sketch provided for Part 2 of this article 
series. This file and all other source code files 
are available on the Circuit Cellar Article 
Materials and Resources webpage.

In the first version of this Arduino sketch 
(given in Part 1) [1], I used the “ESP8266WiFi” 
library to manually build and send the 
HTTP POST requests to the server. By doing 
it that way, it was clearer how the HTTP 
requests are structured, protocol-wise. In 

FIGURE 2
Server response to a POST request.
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this second version, however, I’m using the 
“ESP8266HTTPClient” library that makes the 
sending and receiving of HTTP requests more 
straightforward, because of its additional 
abstraction layer. By comparing the two 
versions, you will see that the second one is 
more compact. Besides, in this new version, 
now we are reading real values from the 
BME688 sensor, instead of using random 
values to simulate sensor readings. 

Remember to change your Wi-Fi credentials 
and your server’s IP address before flashing the 
code. After flashing the code, open the Arduino 
IDE’s serial monitor to see debug information. 
Once the board is connected to your Wi-Fi 
router, it will automatically start to send data 
periodically to the web server. Responses 
from the server will be printed on the serial 
monitor (Figure 2). Now, access MariaDB from 
the command line on your server by opening 

1 <?php
2     // If ‘from’ and ‘to’ dates arrived as key:value pairs
3     if (isset($_GET[‘from_date’]) && isset($_GET[‘to_date’])) {
4         $from_date = $_GET[“from_date”]; //Read date into local var.   
5         $to_date   = $_GET[“to_date”]; //Read date into local var.
6 
7         require_once ‘login.php’; // Include DB login info
8         $conn = new mysqli($server, $user, $password, $database);
9 
10         if ($conn->connect_error)
11             die(“Connection failed: “ . $conn->connect_error);
12 
13         //Add begin/end hours to dates. Ex: “2023-08-08 00:00:00”
14         $from_date_hour = strtotime($from_date . “ 00:00:00”); 
15         $to_date_hour = strtotime($to_date . “ 23:59:59”);
16 
17         // Fetch data and send it back as CSV    
18         Fetch_Db_Csv($conn, $from_date_hour, $to_date_hour);
19         $conn->close(); // Close DB connection
20     }
21 
22     // Fetch data and send them back as CSV
23     function Fetch_Db_Csv($conn, $from_date_hour, $to_date_hour) {
24         // Build the SQL query
25         $query = “SELECT * FROM sensors WHERE unix_t BETWEEN ‘$from_date_hour’ AND ‘$to_
date_hour’ ORDER BY unix_t”;
26         
27         $result = $conn->query($query); // Query the DB
28 
29         // If there’s at least one row, build the CSV string
30         if ($result->num_rows > 0) {
31             echo “unix_t,gas_res,pressure,temperature,rel_hum\n”;                        
32             $csv_row = “”;
33             // Read data from row into local variables
34             while($row = $result->fetch_assoc()) {
35                 $unix_t = $row[“unix_t”];
36                 $gas_res = $row[“gas_res”];
37                 $pressure = $row[“pressure”];
38                 $temperature = $row[“temperature”];
39                 $rel_hum = $row[“rel_hum”];
40                 // Build CSV string
41                 $csv_row = “’$unix_t’,’$gas_res’,’$pressure’,’ $temperature’,’$rel_hum’\n”;
42                 echo $csv_row; // Send CSV string row to HTTP client
43             }
44         } else { // No results that match the fetch criteria...
45           echo “0 results”; // Send feedback to web client
46         }
47     }
48 ?>

LISTING 4
Fetching data from the database and sending them back to web clients.
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a terminal window and executing “sudo 
mariadb”. Run the query, “USE logger_db;” 
and then “SELECT * from sensors;” to display 
the contents of the “sensors” database table. 
You should see listed all data received from 
the ESP8266 data logger that are stored in the 
database, similarly to what we saw previously 
in Figure 1.

FETCHING DATA FROM THE 
DATABASE

Now that we know how to store sensor 
data, let’s see how to retrieve data from the 
database and put them in a suitable transfer 
format for sending them back to the web 
client. We will consider basically two types of 
web clients requesting data from our server: 
a regular web browser, and an embedded, 
MCU-based web client, such as our ESP8266-
based data logger. For web browsers, XML 
and JSON formats are generally preferred. 
For MCU-based clients, however, CSV will 
be generally more suitable. JSON can also 
be used for MCU-based clients, but it is less 
efficient than CSV in terms of memory usage.

In Part 1 of this article series [1], I 
described CSV as a lightweight format that is 
appropriate to use with low-memory devices 
such as MCUs. Listing 4 shows the PHP script 
that fetches data from the database, formats 
them as a CSV string, and sends them back 

to the requesting web client. Let’s see how it 
works. 

Line 3 verifies that the “from_date” and 
“to_date” key:value pairs arrived in the 
incoming HTTP GET request. Only if both keys 
are set, the script will query the database on 
the client’s behalf. Lines 4-5 store both dates 
into local variables.

Line 7 includes the “login.php” script with 
the database login information, and line 8 
opens a connection to the database. Line 10 
checks for any connection error; if there’s any, 
it aborts the script execution (line 11). Line 
14 concatenates the “ 00:00:00” string to the 
“from_date”, because to search the database 
we need to specify the begin-hour along with 
the begin-date. The result will be a string like 
this: “2023-08-08 00:00:00”. Similarly, with 
line 15, we specify “ 23:59:59” as the end-hour 
for the “to_date”. This includes in the search 
all available readings until the last second of 
that day. Next, line 18 calls the Fetch_Db_
Csv() function defined in lines 23-47. This 
function queries the database, prepares the 
retrieved data as a CSV string, and sends 
them back to the HTTP client. Finally, line 19 
closes the database connection.

Let’s look at how the Fetch_Db_Csv() 
function works. The function receives as 
input parameters the database connection, 
the “from-date-hour” and the “to-date-hour” 
(see line 23). In line 25, it builds the SQL 
query that will be used to fetch data from the 
database. The “*” in that query means “all,” 
“sensors” is the table name, and “unix_t” is 
the column that stores the Unix time for each 
row in the table (Figure 1). So, in plain English, 
the full query can be read as follows: Select 
all rows from the “sensors” table where the 
Unix time column has a value between “from_
date_hour” and “to_date_hour”. Arrange the 
results by Unix time in ascending order.

Line 27 submits the query to the database, 
and line 30 checks if there’s at least one row as 
a result. If so, line 31 sends as a first text row 
in the CSV file the column names. Lines 34-
43 iterate over all available rows, extracting 
column values and storing them into local 
variables. For each table row, it then builds a 
CSV row containing sensor readings (line 41), 
and sends it back to the HTTP client (line 42). 
After processing and “echoing” all rows, the 
client will get a CSV file with all the sensor 
readings that match the request criteria.

Let’s test the “fetch_csv.php” script 
from a web browser. First, download the 
aforementioned PHP script from the Circuit 
Cellar Article Materials and Resources 
webpage, and copy it to the “/var/www/
html/backend/” folder in your server. Next, 
in the URI below, replace the IP address for 
your web server’s. Replace as well the start 

FIGURE 3
Fetching the CSV file using a web 
browser.

FIGURE 4
Fetching the CSV file from the command line.



circuitcellar.com 19
FEATU

RES

and end dates with dates you know for sure 
you have sensor readings stored in your 
database:

ht tp://192.168.0.15/backend/ fetch_csv.
php?from_date=2023-08-08&to_date=2023-
08-08

Open the URI in a web browser. An HTTP 
GET request will be sent automatically to the 
web server, which, in response, will send back 
the CSV file containing the sensor readings, 
as shown in Figure 3. Don’t mind the rows 
don’t show broken down properly; that’s just 
because the browser doesn’t recognize the 
“\n” character as a new line.

To get regular dates from the Unix 
timestamps in your database, convert them 

using an online Unix time converter. For 
instance, I took the first Unix time from 
Figure 1 (“1691526851”), and after converting 
it, I got “Tue Aug 08 2023 16:34:11 GMT-
0400.” So, I used “2023-08-08” as start and 
end dates in the URI example above. You can 
use, however, different start and end dates; 
the server will send whatever data it finds in 
that time period.

You can also test the backend from a 
terminal window using the “cURL” library 
on a Linux machine. After changing relevant 
details, run the following command to get the 
CSV file:

curl “http://192.168.0.15/backend/fetch_csv.
php?from_date=2023-08-08&to_date=2023-
08-08”

LISTING 5
Code for the esp8266 HTTP GET client.

1 #define SSID “MyWiFi”
2 #define PASSWORD  “MyCatKnowsAssembly”
3 #define PHP_SCRIPT_URI “http://192.168.0.15/backend/fetch_csv.php”
4 String get_query_string; // ‘GET’ query string with key value pairs
5 
6 void setup() { // Regular Wi-Fi initialization... }
7 
8 void loop() {
9   static long prev_millis; // Stores time of the last publication
10   long elapsed_time = millis() - prev_millis;
11   if (elapsed_time >= READ_INTERVAL) { // Check time interval
12     String from_date = “2023-08-08”;
13     String to_date = “2023-08-08”;
14     get_query_string = “?from_date=” + from_date + “&to_date=” + to_date;
15     Send_Get_Request(); // Send the HTTP request
16     prev_millis = millis();  // Take current time
17   }
18 }
19 
20 void Send_Get_Request() {
21   if ((WiFi.status() == WL_CONNECTED)) {
22     WiFiClient client;
23     HTTPClient http;
24 
25     if (http.begin(client, PHP_SCRIPT_URI + get_query_string)) { 
26       int httpCode = http.GET();
27       if (httpCode > 0) {
28         Serial.printf(“GET code: %d\n”, httpCode);
29         if (httpCode == HTTP_CODE_OK) {
30           String payload = http.getString(); Serial.println(payload);
31           // Parse CSV data here...
32         }
33       } else { Serial.printf(“GET error: %s\n”, http.errorToString(httpCode).c_str());}
34       http.end();
35     } else { Serial.printf(“Unable to connect\n”); }
36   }
37 }

http://192.168.0.15/backend/
http://192.168.0.15/backend/fetch_csv
http://192.168.0.15/backend/fetch_csv.php%E2%80%9D
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In a Windows 10/11 machine, open the 
Windows PowerShell and run:

Invoke-WebRequest -URI “http://192.168.0.15/
backend/fetch_csv.php?from_date=2023-08-
08&to_date=2023-08-08” -UseBasicParsing

Figure 4 shows the output from the 
PowerShell on Windows 10. cURL on Linux 
will show something similar. If you are not 
familiar with these command line tools, don’t 
worry. Just use the web browser instead, 
as explained above. After receiving the CSV 
file, the HTTP client needs to parse it to get 
the individual values. There are available 
CSV parser libraries for virtually every 
programming language.

FETCHING DATA FROM THE MCU
Now let’s see how to fetch the same CSV 

data using the ESP8266 MCU. To achieve this, 
we have to send practically the same HTTP 
GET request sent above, using the command 
line tools or the web browser. Listing 5 shows 

an excerpt of the “esp8266_http_get_client.
ino” Arduino sketch that sends the required 
GET request to the web server. Before trying 
the sketch, remember to change the Wi-Fi 
credentials and PHP script URI in lines 1-3. 
The setup() function contains the same Wi-
Fi initialization procedure as in the Arduino 
sketch that sends POST requests.

Inside the loop() function, there’s 
also a non-blocking delay to send requests 
periodically on a time interval defined by 
the “READ_INTERVAL” constant. Inside the 
“if” statement (lines 11-17), the GET query 
string is built and the request is sent to the 
server. Lines 12-13 define the start and end 
dates for the data we are interested in to 
query the database. These dates must be 
generated dynamically, depending on the 
specific application. Here, for simplicity, we 
are defining them statically in the code.

Line 14 builds the GET query string by 
concatenating the “from_date” and “to_date” 
key:value pairs. This string will be appended 
to the base PHP script URI from line 3. Line 
15 invokes the Send_Get_Request() 
function to send the request. Inside the 
aforementioned function (lines 20-37), a 
connection to the web server is opened, and 
the HTTP GET request is sent (line 25). The 
second argument to the function in line 25 is 
the string concatenation (“+”) of the base PHP 
script URI and the GET request string. The 
resulting string will look this:

“ht tp://192.168.0.15/backend/fetch_csv.
php?from_date=2023-08-08&to_date=2023-
08-08.”

Line 26 retrieves the HTTP response code 
from the server. It will have a positive value 
if the server received and processed the 
request. It will be negative if a communication 
error occurred. If the code is 200 (“HTTP_
CODE_OK”), the server has acknowledged our 
request and sent a response. So, we retrieve 
the payload from the HTTP response’s body 
and print it to the serial monitor (line 30). 
This payload contains the CSV string with the 
sensor readings fetched from the database. 
Figure 5 is a screen capture of the Arduino 
IDE’s serial monitor showing the received 
CSV string. The first text row shows the HTTP 
response code. The CSV string begins in the 
second row, which shows the column names, 
followed by ten rows of sensor data. 

After retrieving the payload, the CSV 
string must be parsed to obtain all individual 
sensor values. To keep the focus on the scope 
of this article, I will not describe here how to 
do the parsing. Nevertheless, the full source 
for this example contains parsing code using 
the “CSV_Parser” Arduino library. You can 

Additional materials from the author are available at: 
www.circuitcellar.com/article-materials 
References [1] to [3] as marked in the article can be found 
there.

RESOURCES

Arduino | www.arduino.cc

Espressif | www.espressif.com

FIGURE 5
Fetching the CSV file using the ESP8266.

http://192.168.0.15/
http://192.168.0.15/backend/fetch_csv
http://www.circuitcellar.com/article-materials
http://www.arduino.cc
http://www.espressif.com
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download it from the Circuit Cellar Article 
Materials and Resources webpage. 

It is worth noting, however, that receiving 
and parsing CSV strings can consume a great 
amount of the MCU’s RAM, depending on the 
size of the incoming payload. This limits in 
practice the amount of data you can receive 
and process with an MCU. The ESP8266-
based board I used for my prototype (the 
“NodeMCU”) has 80KB of RAM. After compiling 
my code with a 5,000-byte buffer for storing 
the payload, I still had around 46.8KB of free 
RAM. So, with the provided Arduino sketch, 
you are limited to 5,000 characters (around 
120 rows of sensors data). If you want to 
receive more data, you must allocate more 
bytes to the “payload_buf” buffer in the code. 
But to avoid buffer overflows, it is advisable 
to start your tests with less data in your 
database, say around 10-20 rows.

CONCLUSION
Building backends with PHP and MariaDB is a 

straightforward process once you understand 
the basics of attending HTTP request with PHP 
scripts and storing/retrieving data from the 
database. Up to this point, we used unsecure 
HTTP instead of secure HTTPS. Thus, because 
of security concerns, the examples shown 
here are only suitable for private Local Area 

Networks. But adding a security layer on top 
of what we have done already is not difficult. 
There are HTTPS libraries for Arduino; and 
the Raspberry Pi server can be equipped 
with a “self-signed” SSL certificate to enable 
HTTPS traffic.

We also set aside concerns regarding 
one of the most infamous web security 
vulnerabilities, known as “SQL injection.” This 
is also not very complicated to address in 
PHP, by following very simple guidelines when 
building the SQL queries. 

Next month, in Part 3 of this article series, 
I will address some of these concerns, and 
also will explain how to get data from the 
server in JSON and XML formats. I will also 
briefly discuss some workflow guidelines for 
front-end web development regarding IoT 
data visualization on a web browser. 
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R Piano, our digital adaptation of the 
traditional mechanical instrument, 
consists of a physical keyboard 
ranging over two octaves. The keys 

can be played like a regular piano, as shown in 
Figure 1. On pressing a key, our synthesizer 
produces the note sounds digitally, just like 
a traditional piano would mechanically. The 
key shape and size match exactly that of a 
traditional piano key, making the transition 
from a traditional piano to RPiano fairly 
smooth. 

RPiano also has several built-in features 
that can be accessed by pressing the relevant 
buttons located just above the keys. Our 
current prototype has five stored songs, 
each with its own control button (Figure 2). 
Pressing the button for a song plays that song 
through a pair of attached speakers, digitally 
producing all the notes in the song, played in 
time to match the song’s rhythm. Additionally, 
the prototype has three different instrument 

modes (with corresponding buttons) that 
simulate the following three instruments: 
a grand piano, a harp, and bells. When a 
particular instrument mode is activated, the 
key presses on RPiano play the note with the 
tone of the instrument selected. Lastly, RPiano 
supports playing both the physical keyboard 
and a chosen pre-stored track simultaneously. 
This facilitates duets: the user can play one 
part on the keys while the in-built synthesizer 
plays the other.

While the buttons correspond to a few 
preselected songs, RPiano serves more 
broadly as a general-purpose synthesizer. It 
can synthesize any music file stored in the 
industry standard Musical Instrument Digital 
Interface (MIDI) format. Thus, RPiano’s 
compatible with millions of existing files—
anything from the latest pop hits to Mozart’s 
timeless symphonies—with no additional 
processing. The user can easily change 
RPiano’s set of songs by supplying MIDI file 

By By 
Samiksha HiranandaniSamiksha Hiranandani

On a Raspberry Pi MicrocontrollerOn a Raspberry Pi Microcontroller

Eager to explore the interface between music and electronics, and the digital 
representation of music, we created RPiano: a portable, playable MIDI synthesizer 
on a Raspberry Pi Pico (RP2040). We developed RPiano over the course of four 
weeks as our final project for Cornell University’s course Digital Systems Design 
Using Microcontrollers. This article details our experience building RPiano.



circuitcellar.com 23
FEATU

RES

paths for each song in the preferred set when 
compiling the software for the device. 

The high-level structure of our project can 
be seen in Figure 3. There are three different 
types of user inputs: physical key presses on 
the keyboard, button presses to play a song, 
and button presses to switch instrument 
modes. Each of these modifies either the notes 
played or the kind of sound that is produced. 

We used frequency modulation (FM) 
synthesis to synthesize the audio output and 
implemented the FM synthesis algorithm in 
software. The synthesis generates a final 
output wave using the set of notes to be 
played, and the kind of sound to be produced 
(piano, harp, or bells) based on user input. 
The output wave is sent to a pair of speakers 
and played out loud.

PROJECT HARDWARE
The project was built using the RP-2040 

chip, the chosen microcontroller (MCU) for our 
course. Its high performance, low cost, and 
compact size made it ideal for our project. 
The other hardware components of the 
project include touch sensors to sense user 
inputs from buttons and touch-sensitive keys, 
as well as the hardware used for audio output 
(DAC, speakers). Our entire circuit schematic 
is shown in Figure 4. The key functions of 
specific components have been described in 
further detail in this section. 

Touch sensing: To detect key presses, we 
used human conductance to utilize a similar 
effect to capacitive sensors. We placed a 
1MΩ pullup resistor on the input, and used 
a metal covering on the keys to make them 
conductive. When a grounded person touches 
the contact (metal key), they close the circuit 
with their body, which pulls the input pin low. 
By sensing the voltage on the input pin, we 
could detect whether the key was pressed 
(circuit complete) or unpressed. Various tests 
to measure voltage values revealed that the 
values remained consistently above 3V when 
there was no contact with the key, while the 
values ranged between 0.5V and 1.1V when 
the key was pressed. This left sufficient room 
for our voltage cutoff to be at 1.2V. 

Key set-up and wiring: We made the keys 
conductive using aluminum foil to wrap the 
black keys, and copper tape for the white 
keys. We secured a long copper wire to each 
key such that each wire was in contact with 
the metal surface of the key. These wires were 
connected to the input sensing on the RP2040. 
We made all our connections on breadboards 
to ease prototyping, but they could be directly 
soldered for more reliable connections. We 
built the keyboard on a cardboard box, with 
the electronics inside.

Multiplexers: With only 28 GPIO pins on 

the MCU, we could not attach each of the 
29 keys to individual pins. We decided to 
multiplex the inputs from the keyboard to 
be able to detect presses on all the keys. We 
chose to use two 16x1 analog multiplexers. 
The key inputs were connected to the inputs 
of the two multiplexers. The multiplexers 
required 4 GPIO pins to select which of the 
16 inputs should be passed through to the 
common output. The select inputs were 
varied through software to read each of the 
16 inputs (16 keys on each multiplexer). We 
were able to reuse the same selector signal for 
both multiplexers. This system enabled us to 

FIGURE 1 
RPiano model

FIGURE 2
Keyboard and buttons
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utilize 29 analog inputs while using only four 
selector pins and two input pins, which freed 
up the other pins on the RP2040 to handle the 
other button inputs and the speaker output. 
This also allowed easy extensibility to a larger 
keyboard. With additional multiplexers, the 
sensing capabilities can be expanded to 64 
keys with only two additional analog input 
pins.

Digital-to-analog converter: We used an 
MCP4802 digital-to-analog converter (DAC) 
to send our output signal from the RP2040 
to a set of speakers. The DAC uses the Serial 
Peripheral Interface (SPI) to take digital input 

from the RP2040 and convert it to an analog 
signal. This allows us to control a speaker 
from the RP2040.

Speakers: We used standard desktop 
speakers for output. It was important that 
the speakers have their own power source 
since the RP2040 and DAC are incapable of 
providing the current required to play music 
at our desired volume.

PROJECT SOFTWARE
On a high level, our software includes 

three primary components, and is written 
in C. The block diagram in Figure 3 shows, 
at a high level, how the different software 
components fit together. 

•	 Part 1 is the FM synthesis algorithm to 
compute the wave output written to the 
DAC to send to the speakers.

•	 Part 2 comprises the user input detection, 
detecting piano key presses, instrument 
mode button presses, and song button 
presses. 

•	 Part 3 is the software for playing songs. It 
handles the song notes to be pressed and 
released based on stored metadata for a 
selected song.

Another piece of software, separate from 

FIGURE 3
High-level overview of the project

FIGURE 4
Circuit diagram for the project
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the code running on the MCU, is a Python 
script to parse a chosen MIDI file, and store it 
in the required format in program memory of 
the program running on the MCU.

Our implementation is split into several 
threads, referred to as “protothreads,” using 
the protothreads library, a light-weight, 
stack-less, threading library written entirely 
in C [1].

SYNTHESIS THEORY
We chose to digitally produce the sounds, 

using FM synthesis to compute amplitude 
values for a note at a particular frequency, 
and using additive synthesis to combine notes 
at different frequencies into a single output 
waveform. 

FM synthesis: FM synthesis is a method 
of sound synthesis that involves modulating 
a waveform using another waveform. Two 
waveforms are generated, and one is used to 
modulate the other, as shown in Figure 5.

The two waveforms are controlled by 
a logic structure that sets the value of each 
waveform at every time point. The value is 
based on how long the note has been played 
and the relevant attack, sustain, and decay 
parameters. At each time step the modulating 
waveform is calculated first, and then its 
amplitude is used to determine how far to step 
the main waveform along a precalculated sine 
table. This causes the main wave to progress 
through the sine table at different speeds based 
on the value of the modulating waveform. 
This modulated frequency can simulate many 

instruments better than the single pitch that 
the basic synthesis algorithm generates [2].

Additive synthesis: For notes played at 
the same time (such as a chord), we used 
the principle of additive synthesis to add 
together all the amplitude values to create a 
sound comprising all the frequencies. This is 
simple, and only requires that at each time 
step we sum the amplitudes of every note 
that is playing. We then divide by the number 
of notes playing to normalize the volume. 
Without normalizing, the output signal could 
spike in volume when notes are pressed or 
released. 

SYNTHESIS IMPLEMENTATION
The core FM synthesis is done in an 

interrupt service routine (ISR), computing 
values for the final wave output that is 
sent to the speakers through the DAC. Our 
implementation for the FM synthesis builds 
on an example by Bruce Land at Cornell 
University [2]. 

The wave output values for producing 
the sound for a particular note cannot be 
precomputed and pre-stored for each note. 
This is because the output frequency at which 
values are written to the DAC needs to be high 
to achieve reliable (not distorted) sound output, 
and it would require too much memory to store 
thousands of samples for each note frequency. 
Thus, the output values are computed in real 
time. These values are written to the DAC each 
time the ISR executes. To write the DAC at 
the high frequency required for good sound 
quality, it is essential that the computation 
is complete before a new value needs to 
be written. Through experimentation, we 
arrived at an optimal time interval value of 36 
microseconds—large enough to leave sufficient 
time for completing required computations but 
small enough that the sound output is smooth 
and pleasant to the human ear without any 
distortions. This corresponds to an output 
sampling frequency value of approximately 
27.7kHz. Frequencies lower than this gave a 
distorted output, leading to sounds that were 
not smooth, while at frequencies higher than 
this, with a shorter interval the computation 
was not completed in time. 

The efficiency of our design depended 
heavily on optimizing the ISR to be as fast as 
possible, ensuring that a new DAC value was 
ready every 36 microseconds, without running 
out of time in the ISR before the next value 
needed to be completed. To play any MIDI 
file, our implementation needed to support 
playing any note in the entire range of the 
piano (88 keys). Additionally, whether the 
note is pressed (and needs to be included in 
the output wave) is controlled by an external 
input choice (physical keys, or choice of song), 

FIGURE 5
Waveform illustrating frequency 
modulation synthesis
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and constantly updated by external threads. 
Checking all 88 keys in the ISR to see if they 
were pressed and then computing the required 
waveform for the frequency corresponding to 
the key took up too much time and led to the 
ISR running out of time before completion. 
This produced distorted sounds. 

We approached this problem by adding a 
buffer for notes that could hold 10 unique notes 
at a time (corresponding to 10 fingers on the 
piano). This way, each time a note needs to 
be played (either on detecting a physical key 
press on the keyboard or a note play event 
in the song), its note number is added to the 
buffer. The ISR now only loops through the 10 
notes in the buffer, checks whether they are 
pressed or not, and then includes them in the 
synthesis computation. The threads handling 
user input add to this buffer read by the ISR, 
as depicted in Figure 6.

There is also another FM synthesis control 
thread that sequences the synthesis ISR, 
precomputing fixed point constants to make 
the ISR faster. The buffer is implemented 
using an array, with each element in the 
array contained in order sorted with respect 
to when it was added to the buffer. When 
the buffer is full and a new note needs to be 
added, the key that was least recently played 
is removed from the tail end and the new key 
is added at the front.

The size of the buffer is a configurable 
parameter that can be changed based on the 
number of unique voices needed to be played 
at the same time. The tradeoff of making the 
buffer too large would be, however, a lower 
sampling frequency due to the increase 
in computation time in the ISR to handle 
computations for a larger number of notes at 
the same time.

USER INPUT DETECTION
A separate protothread handles physical 

key press detections. For a total of 29 keys on 
the physical keyboard, we use two 16-input 
multiplexers, each connected to two separate 
ADC input pins. MCU functions are used to 
read the input values, and switch between 
reading the two ADC inputs. 

The value read from the ADC is converted 
to a voltage value by multiplying the read 
input value by a conversion factor defined 
through experimentation. We defined a 
voltage cutoff constant, and the press was 
detected by checking if the resultant value 
read was lower than the specified voltage 
cutoff value. Through experimentation with 
our physical setup, we determined a value of 
1.2V for the voltage cutoff.

If the key press was detected, the note 
corresponding to the key was set to play. To 
prevent detecting a single key press twice, we 

also stored a previously pressed Boolean value, 
and the note press was only set if the key was 
detected to be pressed and was previously not 
pressed. Additionally, the current state of the 
key was stored, so that it would be considered 
“released” in the synthesis computation only 
when the finger was lifted. This enabled us 
to store information so that the produced 
sound’s length was based on how long the key 
was pressed.

BUTTON PRESSES
Appropriately, a thread called “button 

press” detects button presses. This thread 
checks to see if each of the five buttons 
corresponding to the songs has been pressed 
by reading the GPIO pin of the button. 
When a press is detected, the song data 
corresponding to the chosen song is loaded 
into a global variable. It also enables pausing 
and playing the song if it’s currently playing 
or not playing, respectively.

Instrument button presses are detected in 
a similar manner. If pressed, the parameters 
of the FM synthesis are changed to be the 
values tuned for the instrument corresponding 
to the button. These parameters are accessed 
by the ISR for synthesis, generating modified 
sounds based on the parameter changes. 

MIDI FILE REPRESENTATION AND 
PARSING

MIDI files are the industry standard for 
passing musical performance information 
among electronic musical instruments and 
computers. Unlike an MP3 or WAV file, it does 
not contain real audio data, but instead, the 

FIGURE 6
Software high-level overview
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notes played, their timing, duration, and 
desired loudness, in sequence. Since it does 
not store audio data, it is much smaller in 
size than an alternative MP3 file, so it’s ideal 
for our project with limited data storage. It’s 
also compatible with different instruments—it 
needs only to play the frequency corresponding 
to a given note on the chosen instrument. 
Further, MIDI files make it easy to change 
tempo based on the user’s preference. Each 
MIDI note number is mapped to a particular 
frequency that corresponds to a note. For 
example, MIDI note number 60 corresponds to 
middle C on the piano (C4). We used Equation 
1 to map MIDI note numbers to a frequency 
used for FM synthesis: 

( 69)/12440 2 −= ⋅ nf

The MIDI format consists of a list of events, 
such as “KeyOn” or “KeyOff,” that correspond 
to note activation and release on a keyboard. 
We chose to use the Mido library in Python to 
parse this information [3]. We wrote a script 
to read any MIDI file and store the required 
data to play the song on our synthesizer. The 
script takes in a MIDI file as input, prompts 
the user to choose a track contained within 
the MIDI file, and then parses a sequence 
of MIDI events corresponding to the track 
selected.

We chose to represent each MIDI event 
with three fields: the note to press, the note 
to release, and a hold time (the time to wait 
before performing this event). The hold time 
stored is a relative value and is converted 
to a time in milliseconds by multiplying by a 
constant conversion factor. Storing this time-
based information enabled us to store very 
concisely enough data to reproduce the song’s 
exact rhythm and playing style (adhering to 
different elements of music like rests), note 
values (how long each note is played), as well 
as the pitch (the frequency of the note).

After reading all events, the script 
accumulates a list of events, writing this in 
the form of data to be stored in program 
memory. On detecting a song play button, the 
code iterates through each event in the song 
data corresponding to the chosen song. Before 

each event, the hold time in milliseconds is 
calculated from the relative value stored. 
This is done by multiplying a delay tick value, 
1000ms, by a constant conversion factor for 
the song. This conversion factor for the song 
can be changed to speed it up or slow it down.

PERFORMANCE
Over four weeks, we were able to create 

a playable keyboard that successfully detects 
key touches and plays the required note. We 
were also able to play any readily available 
MIDI file on our synthesizer, making use of 
the entire range of the piano (88 keys), and 
handling songs that contain a wide range of 
notes and different, complicated rhythms. 
The pieces, when played on our synthesizer, 
closely modeled the sound of a real piano, 
and exactly replicated the rhythm and pitch 
specified in the MIDI file. Circuit Cellar’s Article 
Materials and Resources webpage contains a 
link to a video of RPiano in action [4]. 

FUTURE WORK
Overall, our design meets our 

expectations. In some areas, it even exceeded 
our expectations—we did not expect to be 
able to handle more complicated songs with 
many chords and quick notes smoothly. In 
terms of the physical design, while wiring the 
keys with tape and using the breadboard was 
a quick solution that worked smoothly for the 
most part, in certain cases a key press would 
not be registered while testing due to a wire 
slipping. Soldering the wires onto the metal 
for the keys and onto a board would improve 
this issue, and would make the design more 
foolproof and durable.

There are also multiple extensions 
that we’d planned as stretch goals that we 
could implement in addition to the existing 
functionality. For the songs, we did not use the 
volume information encoded in the MIDI file 
since we wanted to be consistent with volume 
across songs and the keyboard. The code could 
be altered to include changes in loudness on 
the keyboard, as well as effects like piano 
and forte in sheet music. Another possible 
extension is to add the three pedals to the piano 
that create the sustain effect—we could modify 
the FM synthesis parameters when the pedals 
are pressed. Finally, we could also enable the 
user to change the FM synthesis parameters 
through a bar using a potentiometer. This 
would allow users to dynamically alter the 
kinds of sounds produced, rather than just 
having three different modes. 
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 Embedded Displays Embedded Displays

By By 
Michael LynesMichael Lynes

T iming. For those of us who have had 
a long association with engineers, 
or for that matter may in fact be 
engineers themselves, timing is a 

very interesting word. Let me explain.
Most people react to the subject of timing in 

either a negative or at best ambivalent way. For 
instance, if you say to a person, “Your timing is 
off,” or “The timing is not good for me,” their 
perception will be that there is a problem that 
needs to be addressed. You see this a lot in 
business or social situations where people will 
negotiate a time for a meeting or try to tailor a 
particular action to best fit in with their other 
activities. Time management is a skill, and 
whole industries have been dedicated to the 
administration of personal and professional 
time, with scheduling assistants, calendar 
apps, and cloud-based day-timers. 

On the personal front, much of our early 
life experience from the time we enter 
preschool is about learning the proper timing 
for various types of interactions. Children are 
drilled and trained in how to behave, and a lot 
of the basic instruction will center around the 
timing of a specific action or behavior—when 
it is appropriate, and when it may not be.

With all the above said, for engineers, the 
word timing has a very different meaning. 

That is not to say that the prior two meanings 
are invalid. But one of the charming, some 
might say challenging, aspects of our sort of 
folk is our strange fascination with time. 

Take the example of social timing given 
above. Based on my experience, when an 
engineer finds themselves in a room full of 
non-engineers, normal people if you will, there 
is a bit of a disconnect. The conversations in 
the room will likely revolve around everyday 
subjects: the weather, sports teams, politics, 
and so on. This is not to say that engineers 
don’t have concern for these types of topics, 
but our take on them is different.

The weather is a good example. If an 
engineer happens to be present when the 
subject of the weather crops up, you will 
observe one of two responses. The first 
and most common will be some form of 
non-committal social noise. “Hmm,” is one 
of my favorites, as is “Ah...yes,” said with 
a polite nod. The intent is to signal to the 
speaker that their speech has been received 
and understood, and that further speech is 
encouraged. I liken it to a low-level social 
subroutine, a near-autonomic function 
designed to passively ignore banal discourse 
while not causing distress on the part of the 
speaker. 

It’s All About TimingIt’s All About Timing
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As a past master of this technique, I 
sometimes play an internal game to see 
just how long I can respond in this manner, 
employing a series of utterances comprised 
of encouraging word fragments with zero 
semantic content, while the person I’m 
interacting with remains unaware that I’ve 
checked out of the present moment and 
instead am engaged in mentally running 
through a problem from my latest embedded 
firmware project—say a multi-level finite 
state machine to be oddly specific, trying to 
determine the best way to handle the timing 
of reentrant variable concurrency. 

To be clear, I’m not doing this to be 
disrespectful, and I am in fact listening at 
some level. The structure of my pseudorandom 
response subroutine has a built-in priority 
interrupt that summons my full awareness if 
the conversation turns to a subject that I am 
actually interested in, or if the opportunity 
arises to deftly redirect the flow into a more 
productive channel of discourse with a well-
placed joke or pun. The purpose served is in 
fact a form of time scheduling, specifically to 
optimize the conservation of personal time. 
Engineers love efficiency, getting the most 
value out of every waking hour. Note that 
we are back to the subject of timing again, 
employed as both a defensive shield and a 
weapon with offensive capability.

The second form of response is triggered 
if the banal discourse happens to touch on a 
subject that I find appealing. The unfortunate 
normal being whose innocent remark sparks 
this reaction might feel their eyes widen in 
horror as I launch into near-eidetic recall of 
everything I’ve read on the topic. Returning 
to the example of a weather-related 
conversation, their offhand comment might 
bring to mind a recent article I’d consumed 
on the effects of stratospheric super-heating 
caused by high-energy particles from solar 
ejecta. Without the slightest concern for the 
esoteric nature of the subject or their potential 
lack of interest, a torrent of words spill 
forth describing how the charged particles 
slam into the Earth’s outer atmosphere and 
subsequently influence long-range weather 
patterns. In this case, my timing could not be 
worse. Nevertheless, the unfortunate listener 
will be subjected to a minutes-long diatribe 
consisting of a highly technical and detailed 
exposition of my thoughts on the matter. 
And I will continue regardless of the victim’s 
obvious discomfort or the glazed look in their 
eyes, the fire-hose flow of information only 
ceasing if my significant other happens to 
be near enough to dig a well-placed elbow in 
my ribs. Her superior timing may be able to 
save me from myself, but in most cases, the 
damage has been done. The conversational 

buzz may resume, but unless another 
engineer is present, my participation in it will 
be severely curtailed. 

THERE’S ALWAYS TIME TO DO IT 
OVER...

As the old saying goes, “There’s never 
time to do it right, but there’s always time 
to do it over.” And, speaking of do-overs, the 
subject of this month’s Technology Feature, 
embedded displays, probably sounds familiar 
to regular readers of this column. In fact, it 
was only a short time ago—July of this year—
that we spent a good deal of time exploring 
the capabilities of embedded displays from 
the perspective of digital signage (“Digital 
Signage,” Circuit Cellar 396, July 2023) [1]. 
However, this topic is as broad as the mighty 
ocean that the Pequod set sail upon, and as 
deep as the depths to which the white whale 
himself might dive. So in this month’s issue, 
we are going back into the belly of the beast, 
so to speak, to look at embedded displays 
once more.

But, before we delve into the hoary digital 
guts of modern display technology, let’s take a 
stroll down memory lane and talk a bit about 
Old Guy Electrical Engineer (OGEE) displays. 
Back in the ancient days of yore, displays were 
huge, hot, noisy boxes that consumed a lot of 
power and precious desk space. As mentioned 
in another Tech Feature article, the ADM-
3A, or perhaps the beast shown in Figure 1, 
would often be your working interface to the 
DEC VAX 11/780 or PDP-11 minicomputer that 

FIGURE 1
OGEE VT-100 Display
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your current project was cross-compiling on 
(Figure 2). Fun fact: All modern 102-style 
keyboards owe their shape and function to 
the original VT-100 keyboard seen in Figure 
1, and the VT-100 screen cursor positioning 
commands still work to this day. 

These displays were not much more 
than overgrown oscilloscopes with clunky 
keyboards mounted in front of the tube. The 
basic technology was comprised of a high 
voltage cathode ray tube (CRT), enhanced with 
control circuits driven by a small processor 
and some RAM memory. CRT itself was an 
even more ancient display technology that 
used an electron gun that produced a narrow 
beam of electrons, and deflection plates 
that would guide the beam in a scan pattern 
across the surface of a glass tube coated with 
phosphor. The beam pattern was a row, or 
“raster,” scan, and the speed at which the 
scan would complete one sweep of the entire 
display area was called the refresh rate. 

These displays were able to render 
images by taking advantage of the human 
eye’s persistence of vision, the effect that 
you can most easily perceive when you stare 
at a bright light for too long and then look 
away, preferably at a blank sheet of paper. 
An afterimage of the bright light will appear, 
seeming to float above the real image of the 
blank sheet. The human eye is a miraculous 
device, consisting of an organic light-focusing 
mechanism and an opto-neuro-chemical 
interface that we call the retina. The phantom 
image you see is a side effect of the way your 
eyes perceive images. Specialized cells of the 
retina undergo a chemical change in response 
to various frequencies of light. This causes 
electrical impulses to be sent along the optic 
nerve, and ultimately to the visual cortex of 
the brain for processing. The chemicals that 
are employed have a response time measured 
in the millisecond range and can become 
exhausted by intense exposure to light. The 
refreshing of these cell chemicals takes time, 
and has a relatively long hysteresis effect, 
meaning that there is a period—the cycle 
time—during which they cannot properly 
convert the received light into the correct 
impulses. This effect is perceived as an 
“afterimage,” or phantom image, in your 
vision. 

This tendency of the eye to preserve an 
image in this way allows display technologies 
like movies and television to create the illusion 
of motion by updating the picture at a higher 
rate than the eye can perceive. In this case, 
a complete picture is projected onto a screen. 
The eye sees the picture for a moment, 
and then a new picture, the next frame, is 
projected onto the same spot. For obvious 
reasons, the alignment of these pictures must 

FIGURE 3
CRT raster scan timing

FIGURE 2
DEC VAX 11/780



circuitcellar.com 33
TECH FEATU

RE

be precise. The optimal picture change rate is 
something around sixteen frames per second. 
Once you achieve this rate or higher, the eye 
no longer sees individual images or jerky 
motion, but rather the illusion of smooth 
animation. 

So, how is this accomplished with a single 
dot illuminated by an electron beam you might 
ask? Well, it’s basically explained in the timing 
diagram in Figure 3. As you can see, the 
screen is divided into a number of elements—
let’s call them picture elements, or pix-els for 
short. There are 640 pixels on one line of the 
screen. Each one is the size of our electron 
beam’s focal dot. Their size is also affected 
by the grain size and type of phosphor, but 
let’s leave that nit for another discussion. 
The timing of the scan—and I can almost feel 
your increase in interest as we return to our 
favorite subject—is the important part.

Each raster is scanned by the horizontal 
deflection of the beam. You can see this 
depicted toward the bottom of Figure 3, 
which shows the slope of the horizontal plate 
deflection coil current. As the slope increases, 
there is greater current and more deflection. 
The pixels themselves are turned on or off 
by the activation of the electron beam itself, 
which is in turn modulated by the values in 

the display buffer. The display buffer is a RAM 
memory in which each “bit” is either a one 
or a zero, corresponding to the gun being 
on or off. Turning the gun on excites a pixel, 
and off allows that pixel’s state to remain 
unexcited. There is a decay rate of excitation, 
an afterglow if you will, that we depend on to 
see the image on the screen.

www.st.com
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last longer by providing monitoring, 
balancing, and protection for   
industrial applications as cordless 
power tools, energy-storage 
systems, portable equipment, 
and more.

power tools, energy-storage 
systems, portable equipment, 
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As you can further glean from the timing 
diagram, once the scan completes a row, it 
then goes into the retrace area. During this 
time, we reset the horizontal deflection to the 
left-hand side of the screen, and, importantly, 
we increase the vertical deflection such that 
we are now going to trace our beam across 
the next row of our display. Note that our 
RAM, or display buffer, must have a row of 
bits for each horizontal sweep and a depth 
of bits that corresponds to the number of 
vertical scans. This display is a VGA, 640x480, 
which means that we can render an image 
that is, at the most, 640 pixels wide by 480 
pixels high. The top left is pixel 0,0 and the 
bottom right 639,479 (max row, max column). 
This addressing scheme is still used to this 
day, and it’s a legacy of this old raster scan 
tech. 

Note that we are back to timing, once again. 
Most of the magic in this diagram happens 
during the retrace sync and the vertical 
deflection update—that is to say, while your 
human information processor is still receiving 
and assembling the prior frame. During this 
period, the RAM of the frame buffer is read 
to allow the next row of dots to be displayed. 
The entire frame buffer can also be updated—
all the rows once per vertical sync pulse, or 
line by line after each horizontal sync pulse. 
This understanding of timing is what allows 

the display to function efficiently, and to 
engineers it is both beautiful and crucial.

EMBEDDED DISPLAYS
Now, with that mischief managed, 

let’s move on to our actual topic: modern 
embedded displays. The critical thing to note 
here is that all the prior art that was developed 
for CRT displays—the moving picture frames, 
the scan, the refresh rates, the colors (we 
didn’t even touch on colors), and so on—are 
all required for an embedded display to be an 
effective information transmitter. Humans are 
still the target audience, so we can still take 
advantage of our unique visual processing 
limits. But the technology and the timing 
that makes embedded displays work is very 
different.

As you can see in Figure 4, LCD-type 
displays allow both horizontal and vertical 
read and write access to each individual 
screen element. In this case, all the updates 
are digital, and the N-clock is used in place of 
the high-speed analog raster scan, allowing a 
full row of display elements, at whatever color 
bit depth your individual display supports, to 
be clocked in from the display buffer.

The vertical write update clock timing is 
slower, but still needs to accomplish what CRT 
hardware did with analog electronics. Namely, 
it must refresh the entire screen’s worth of 
bits (AKA the frame) at the specified refresh 
rate. The LCD can also be read, which means 
that you can capture elements of the screen 
by reading the information out of the display 
itself, or the corresponding frame buffer as 
you prefer. With modern screens supporting 
millions of colors, 1080p resolution, and 
frame rates of 120 frames per second (fps), 
we can see that the timing will become both a 
critical and precise part of our design.

THE PHYSICS
Something I learned that I had not known 

when researching for this article was a bit 
about the physics involved in creating modern 
AMOLED displays [2]. As shown in Figure 5, 
the light produced by a light-emitting diode 
is due to the electroluminescent effect. As 
current flows across the semiconducting band 
gap, energy is lost. In standard indirect band 
gap diodes, this energy is converted into heat. 
In LEDs, a direct band gap is used, and as 

FIGURE 5
LED physics
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the gap is traversed, the lost energy produces 
photons in a characteristic wavelength, which 
is directly related to the band gap energy 
of the materials forming the p-n junction. 
If the casing that covers the junction is 
transparent, this light will be able to escape 
and be seen. The color or frequency of the 
light can range from infrared to ultraviolet, 
and everything in between (Figure 6). Some 
of that range is in the visible spectrum, and 
LEDs are chosen to produce the characteristic 
primary colors (RGB) or secondary colors 
(CMYK). Producing a specific color consists of 
activating combinations of these LED dots and 
varying their intensity to produce one of the 
millions of colors we can render on modern 
displays. I found the science to be fascinating, 
and if you do as well, check out Circuit Cellar’s 
Article Materials and Resources web page for 
a link to an article detailing the incredible 
manufacturing processes used to create these 
dense LED arrays [3].

THREE TIMES IS THE CHARM...
A word about criteria: Embedded displays, 

unlike the digital signage I wrote about in July 
[1], have some restrictive requirements. A 
good summary of these requirements can be 
found on the Predictable Designs website [4]. 
One of the most important limits is power, 
in that an embedded project often needs to 
be configured to run on batteries. Embedded 
displays must also be designed to give a lot of 
bang for the buck—high-definition resolution, 
fast update times, full-motion color, and can 
be efficiently driven by smaller processors that 
aren’t dedicated to video processing alone. 
They also have to be small, and, in the same 
way that it’s harder to write a great short 
story than a novel, this alone is a significant 
challenge. Last, they must be inexpensive, as 
the budget for an embedded device can’t be 
dedicated to the display technology alone. 

It all seems like a tall order. Luckily there 
are a lot of manufacturers that have stepped 
up to supply this need. So, without further, 
further ado, let’s look at some of the best 
examples of embedded displays available on 
the market today.

MIKROE: MIKROE, founded in 2001 with 
headquarters in Belgrade, has thousands of 
embedded products designed with both the 
industrial IoT market and the hobbyist in mind 
[5]. It has a full line of embedded displays, 
and its thin film transistor (TFT) product 
line (Figure 7) features full-color capacitive 
touchscreens in a wide variety of form factors 
[6]. Prices range from $26 for a 4.3” display 
to approximately $90 for a 7” diagonal model. 
Color spectrums are wide and deep, and 
MIKROE offers comprehensive documentation 
and support for all its products.

FIGURE 7
MIKROE 2168 TFT

FIGURE 6
PN junction colors
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Crystalfontz: Crystalfontz is a 
manufacturer of all sorts of displays, from 
monochrome transparent OLED (TOLED), to 
full-color AMOLED, TFT, and ePaper. Its line 
of resistive touchscreens features enhanced 
readability in direct sunlight and has 800x400 
resolution in a 5” diagonal package (Figure 8) 
[7]. The company offers discounted volume 
pricing, 16 million colors, and wide-angle 
viewing thanks to their IPS display technology. 
Its resistive touch is optimized for more 
rugged environments where the need to have 
thick protective coverings is crucial. Screen 
resolutions range from 80x160 to 1280x800 
pixels, and low-power options are available.

STMicroelectronics: ST has a range of 
Cortex ARM-based Discovery kits with high-
resolution displays built in. These kits, such 
as the STM32H747 (Figure 9), feature support 
for a wide variety of OS and IDE environments, 
and they support ST’s embedded display 
controller technology, allowing full motion at 
high frame rates with little to no “tearing” 
issues due to their ability to sync updates 
with the screen refresh [8]. 

A perfect example of timing to the rescue, 
ST offers the kit through many vendors, 
with the expected excellent support that 
ST is known for throughout the industry. 
Once you’ve developed your application, 
it’s an easy translation to a wide variety of 
supported displays. And, as I learned from 
the company-sponsored webinar on deep 
learning [9], their TouchGFX framework 
makes porting a breeze.

Avnet Embedded: Avnet Embedded 
has deep experience in the embedded 
environment [10]. It’s a division of Avnet 
GmbH, founded over 100 years ago in 
Freiburg, Germany. The original Avnet began 
serving customers as a distributor in New 
York City in 1921, eventually growing to a 
huge multinational with offices around the 
world. The Avnet Embedded division was 
created in 2001, originally as Avnet EMG, 
and went through several iterations over the 
next couple of decades before relaunching as 
Avnet Embedded in 2021. 
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FIGURE 9
STMicroelectronics Disco Kit

FIGURE 8
Crystalfontz TFT resistive touchscreen
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Display technology for the embedded 
market is one of Avnet’s core strengths, and 
its human-machine interface (HMI) line of 
displays and touchscreen technology is second 
to none. They also feature a comprehensive 
line of SimplePlus TFT displays ranging 
from 4.3” displays to huge 21.5” diagonals 
with 1920x1080 resolution, suited for high-
definition medical equipment applications 
(Figure 10).

CODA: CIRCUIT CELLAR’S 
400TH ISSUE

And last, speaking of timing—the timing 
of my association with Circuit Cellar over the 
past twelve months seems to me to be 
fortuitous, as I have very much enjoyed 
writing this series and I do hope it continues 
into the coming new year. In this particular 
missive, I’ve really gone on (and on, and on), 
but I think in this case I can be excused. As 
you are likely aware, this is the 400th edition 
of Circuit Cellar published since the start of 
the magazine all those many years ago. I am 
honored to have had the opportunity to 
headline it. While my association with this 
publication is barely a year old, I feel quite 
at home here, and working with Sam, our 
Editor-in-Chief, as well as KC, our publisher, 

has been both a professional pleasure and a 
treat. In any case cellar dwellers, happy 
400th! Thanksgiving is almost here in the 
US, and winter is coming, so let’s raise an 
appropriately timed wassail glass and toast 
to CC and the next 400 editions to come. 
That’s all from me for now. My time is up, 
and I can see the hook reaching out from 
stage left as I speak. Until next time… 

FIGURE 10
SimplePlus from Avnet Embedded
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Datasheet:  

DC-DC Converters

N anopower, high-efficiency, ultra-
compact, intelligent power sharing—at 
great risk of repeating myself, today’s 
DC-DC converters continue to evolve 

in many directions. This is perfectly natural, 
of course, considering the myriad new, niche 
applications that sprout up every week, each with 
its own set of needs. So whether the converter 
is designed to accommodate multi-voltage 
electronics, battery-powered devices with long 
standby times, rugged applications exposed to 
a wide operating temperature range, or if the 
module simply needs to be very, very small, 
manufacturers keep rising to the challenge—
producing DC-DC converters with still higher 
power densities, wider voltage ranges, more 
advanced filtering, and still tinier footprints.

It’s also perfectly natural, then, that a gallery 
such as this can only capture a minuscule sliver 
of the huge breadth of options available on the 
market today. A primary consideration in Circuit 
Cellar’s DC-DC converter selection this month was 
“newness.” That is to say, rather than attempt to 
convey the full range of converter possibilities out 
there, we went with items that are, for the most 
part, piping-hot fresh. In the next few pages, we 
present devices with ultralow quiescent currents, 

ultra-small footprints, high configurability, low 
costs, intelligent capabilities, and high efficiency, 
to name just some of the gallery’s highlighted 
features. These converters target various 
sectors, from networking and communications, 
to battery-powered devices, to industrial 
solutions, to current-sensing applications, and 
more. There are several familiar names in the 
following gallery—ST, TI, and Analog Devices to 
name a few—and others that might be new to 
the reader.

As an example of an out-of-this-world 
application (please pardon the pun), VPT 
announced in August their SVLFL5000 series built 
for the missions in space. With “Total Ionizing 
Dose” (TID) performance and “Enhanced Low 
Dose Rate Sensitivity” (ELDRS) to 60krad, these 
wide input voltage range converters are operable 
over the full military temperature range (-55°C to 
+125°C) with no power derating. They are suited 
for applications in low Earth orbit, medium Earth 
orbit, geostationary orbit, and even deep space 
missions. I highlight this particular device to 
drive home the point that DC-DC converter 
solutions are increasingly wide-ranging, in the 
most literal sense. And just in case we have any 
engineers reading this issue in orbit. 

By
Sam Wallace, 
Editor-in-Chief

Manufacturers continue to roll out flexible, efficient, and extremely tiny DC-DC 
converter modules. This month’s gallery offers a glimpse of the many offerings 
currently available on the market for myriad niche embedded solutions. 

From the Hyper-Small From the Hyper-Small 
to the Far Outto the Far Out

NEXT MONTH'S TOPIC: Tiny Embedded Boards Send related product announcements to editor@circuitcellar.com

mailto:editor@circuitcellar.com
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Analog Devices MAX18000: https://www.analog.com/media/en/technical-documentation/data-sheets/max18000.pdf 

Bel Power Solutions 700DNG40-24-8: https://www.belfuse.com/resources/datasheets/powersolutions/ds-BPS-700DNG40-24-series.pdf

Flex Power Modules BMR314: https://flexpowermodules.com/resources/fpm-flyer-dc-dc-converters-for-ai-applications

Liquid-Cooled Converter for 
Hybrid and Electric Vehicles

The Bel Power Solutions 700DNG40-
24-8 is a 2nd generation 4kW liquid-
cooled DC-DC converter that creates 
DC voltages in hybrid and electric 
vehicles suitable to power low voltage 
accessories. 700DNG40-24-8 converter 
operates at input voltages from 450 to 
900VDC and delivers up to 4000W of 
output power. Features include very 
high efficiency, high reliability, low 
output voltage noise, and excellent 
dynamic response to load/input 
changes. This converter is designed for 
applications in construction equipment, 
underground mining, ground support 
equipment, on- and off-highway 
vehicles, and marine equipment.

• Very high efficiency up to 95 %
• Input voltage range: 450 – 900 VDC
• Output power up to 4 kW
• Parallelable up to 8 unit
• Full galvanic isolation between input 

and output
• Liquid cooled 
• CAN bus serial interface
• Optional UDS functionality, CAN FD & 

Cyber security 
• Adjustable output voltage and over 

current protection 
• Over temperature, output over 

voltage and over current protection, 
input and output reverse polarity 
protection 

• IP rating IP67 & IP6k9k 
• E-Mark Certification

Bel Power Solutions
www.belfuse.com

nanoPower Boost Converter 
with Ultralow Quiescent 
Current

The MAX18000 is a nanoPower boost 
converter with an input voltage range 
of 0.5V to 5.5V (VOUT > VIN + 0.2V) 
and a switching current limit of 3.6A. It 
features an ultralow quiescent current 
of 512nA which makes it ideal for 
battery-powered applications requiring 
a long standby time. The IC operates 
in nanoPower mode at low loads and 
transitions into skip and CCM modes 
of operation at higher load currents 
to ensure high efficiency over a wide 
current range. The output voltage 
can be varied between 2.5V and 5.5V 
using a single RSEL resistor. The IC 
features a True Shutdown mode, which 
disconnects VIN and VOUT when the EN 
pin is pulled low. 

• 0.5V to 5.5V input voltage (VOUT > VIN 
+ 0.2V)

• 1.8V minimum start-up voltage
• 2.5V to 5.5V (in 100mV steps) output 

voltage
• 3.6A cycle-by-cycle inductor current 

limit
• 512nA IQ supply current into the 

output
• Output short-circuit protection
• Thermal-shutdown protection
• 95% peak efficiency with 90% or 

higher efficiency for load > 20µA
• 1.07mm x 1.57mm, 0.5mm pitch 

6-bump WLP
• -40°C to +125°C operating 

temperature range

Analog Devices
www.analog.com

Ultra-Small Digital Non-
Isolated IBC with 4:1 
Conversion Ratio

The BMR314 is a non-isolated, 
unregulated digital intermediate bus 
converter (IBC) that delivers 800W 
of continuous power, and 1.5kW of 
peak power in an ultra-small package 
measuring just 23.4 x 17.8 x 9.65mm. 
Operating over an input voltage range 
of 38-60V, the 4:1 input-to-output ratio 
results in an output range of 9.5-15V. At 
an input voltage of 54V, the efficiency of 
the module is as high as 97.4% at 50% 
load (35A), and the part is thermally 
optimized for cold wall mounting via 
the attached baseplate. The BMR314 
is offered in an industry-standard 
LGA footprint and pin-out for security 
of supply and second sourcing. It can 
deliver a power density of more than 
373W/cm3 or 6.1kW/in3 when delivering 
peak power to the load. Designed for 
powering cloud-based applications 
including AI, machine learning, and 
hyperscale computing.

• Compact non-isolated DC/DC 
converter 

• Input output ratio 4:1
• Digital PMBus interface 
• LGA industry standard footprint and 

pinout
• Halogen-free
• Optimized thermal design for cold 

wall 
• Dimensions: 23.4 x 17.8 x 9.65 mm

Flex Power Modules
flexpowermodules.com

http://www.belfuse.com
http://www.analog.com
https://www.analog.com/media/en/technical-documentation/data-sheets/max18000.pdf
https://www.belfuse.com/resources/datasheets/powersolutions/ds-BPS-700DNG40-24-series.pdf
https://flexpowermodules.com/resources/fpm-flyer-dc-dc-converters-for-ai-applications
https://www.flexpowermodules.com
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OmniOn Power DLynx III MLX040: https://www.omnionpower.com/assets/pdfs/windchill/data-sheet/mlx040_ds.pdf

RECOM RxxC05TExxS: https://g.recomcdn.com/media/Datasheet/pdf/.fiSlC8jY/.tce0d3579c4367bc096e6/Datasheet-514/RxxC05TExxS.pdf

Renesas RAA211630: https://www.renesas.com/us/en/document/dst/raa211630-datasheet

Datasheet:  

DC-DC Converters

Synchronous Step-Down 
Regulator for Industrial Power 
Systems

The RAA211630 is a DC/DC 
synchronous step-down (Buck) regulator 
that supports a 4.5V-60V input voltage 
range and adjustable output voltage. 
It can deliver up to 3A of continuous 
output current with premium load 
and line regulation performance. The 
RAA211630 uses peak-current mode 
control architecture. Its PWM switching 
frequency is programmable to provide 
the best trade-off between transient 
response and efficiency. It supports 
PFM operation and DEM to maximize 
light-load efficiency, in addition to 
an external bias LDO input to further 
reduce power dissipation across the 
load range. 

• Wide input voltage range: 4.5V to 60V 
• Adjustable output voltage: 0.8V to 

90% of VIN 
• Up to 3A of continuous output current 
• Default 400kHz switching frequency 

and programmable switching 
frequency range from 200kHz to 
800kHz 

• ±1% Load regulation accuracy from 
-40°C-125°C, ±0.5% load regulation 
accuracy at 25°C 

• 95µA typical quiescent current 
• Internal compensation 
• Internal 0.5ms soft-start in QFN; 

External programmable soft-start 
(HTSSOP) 

Renesas
www.renesas.com

Low-Cost, Low-Profile 
Isolated DC-DC Single Output 
Converter

The R05C05TE05S is a low-cost, 
low-profile, 0.5W SMD isolated DC-DC 
single output converter with a 4.5-
5.5V input range and a semi-regulated 
5V output. There is no minimum 
load requirement which is ideal for 
applications that switch into very light 
load operation modes. The device is also 
able to deliver 600mW for applications 
requiring additional power for short-
peak operation modes. Standard 
isolation is 3kVDC/1min, and the 
operating temperature is from -40°C 
up to +125°C with derating. The fully-
automated design, which is equipped 
with short-circuit, over-current, and 
over-temperature protection, ensures 
the highest reliability in applications 
such as communication, current 
sensing, and COM port isolation.

• Compact 10.35 x 7.5mm SMD package
• Low profile (2.5mm)
• 3kVDC/1min isolation
• Low EMI emissions
• Ultra-wide temperature range -40°C 

to +125°C
• Fully automated, high-reliability 

design
• Semi-regulated 5V output

RECOM
recom-power.com

Efficient and Flexible Power 
Modules

The digital DLynx III power modules 
are easy-to-use, highly configurable 
non-isolated DC-DC converters that can 
deliver up to 320A of output current with 
a master/satellite configuration. These 
DC-DC converters from OmniOn Power 
(previously ABB Power Conversion) 
are ideally suited for networking, 
industrial, and datacoms applications, 
and enable increased efficiency and PC 
board design flexibility through master-
satellite groupings for single- or dual-
output voltage configurations. The 
master DC-DC converters can be used 
as standalone point-of-load modules 
or with satellites to help meet growing 
board-level power requirements and 
power density outputs. 

• Minimized board space requirements: 
High-density footprint (119 to 205A/
in2, depending on module); Optional 
satellite phase modules provide 
increased output voltage or secondary 
output option

• 90% efficiency at full load (12VIN, 
1VOUT, at 25°C); Phase shedding 
for increased efficiency at low-load 
operation

• Modules provide maximum rated 
current for 12VIN, 1VOUT at 200lfm 
airflow and at 80°C ambient 
temperature or better

• Overvoltage/undervoltage and 
overcurrent/undercurrent protection

• Temperature operating range: -40°C 
to 85°C

OmniOn Power
omnionpower.com

https://www.omnionpower.com/assets/pdfs/windchill/data-sheet/mlx040_ds.pdf
https://g.recomcdn.com/media/Datasheet/pdf/.fiSlC8jY/.tce0d3579c4367bc096e6/Datasheet-514/RxxC05TExxS.pdf
https://www.renesas.com/us/en/document/dst/raa211630-datasheet
http://www.renesas.com
https://www.recom-power.com
https://www.omnionpower.com
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High Efficiency in a Compact 
Footprint

The STMicroelectronics L6983I 10W 
isolated buck (iso-buck) converter 
ensures high efficiency and a compact 
footprint, with advantages including 
low quiescent current and 3.5V-38V 
input-voltage range. The L6983i is 
suitable for applications that require an 
isolated DC-DC converter. It implements 
an iso-buck topology, which uses 
fewer components than a conventional 
isolated flyback converter and requires 
no optocoupler, saving bill-of-materials 
costs and PCB space. Further benefits 
of the L6983i include 2µA shutdown 
current and integrated functions such 
as adjustable soft-start time, internal 
loop compensation, and power good 
indicator, as well as protection from 
overcurrent and thermal shutdown. The 
selectable spread-spectrum feature 
improves EMC performance.

• Designed for iso-buck topology
• 3.5V to 38V operating input voltage
• Primary output voltage regulation, no 

optocoupler required
• 4.5A source/sink peak primary current 

capability
• Peak current mode architecture in 

forced PWM operation
• 390ns blanking time
• 200kHz to 1MHz programmable 

switching frequency. Stable with low 
ESR capacitor: min 2µF

• Internal compensation network
• 2μA shutdown current

STMicroelectronics
www.st.com

Integrated Buck Converters 
Offer Intelligent Power-
Sharing Capabilities

Silanna Semiconductor’s SZPL3002A 
DC/DC converter ICs are the world’s 
first integrated buck converters to offer 
intelligent power-sharing capabilities. 
The SZPL3002A is a high-efficiency, 
synchronous buck converter along 
with a USB-PD controller creating a 
complete, single IC, downstream facing 
USB-PD compliant port. The device can 
supply fixed output voltages as well 
as Programmable Power Supply (PPS) 
profiles for fast charging to connected 
devices. The device also supports the 
Qualcomm QuickCharge protocols, 
QC2.0/3.0/4.0/4.0+/5.0, supporting 
Type-C output ports as well as Type-A 
ports.

• Synchronous buck regulator with 
switching frequencies up to 2MHz 

• Integrated USB-PD controller 
supporting USBPD R3.0, PPS, BC1.2, 
QC 2.0/3.0/4.0/4.0+/5.0 support

• Intelligent multiport power sharing 
and power re-balancing

• High efficiencies (>98%)
• Selectable power saving mode
• Selectable power contract 

configurations reduces required 
programming

• Temperature triggered power 
throttling

• VCONN power generation for 
e-Marked Cables

• Wide Input Voltage Range: 7.0V to 27V
• Supports VOUT of 3.3 ~ 21.5V, at 3.25A

Silanna Semiconductor
powerdensity.com

DATASHEET URLS: 

Silanna Semiconductor SZPL3002A: https://powerdensity.com/wp-content/uploads/2022/08/SZPL3002A-Product-Brief-Prelim.pdf 

STMicroelectronics L6983I: https://www.st.com/resource/en/datasheet/l6983i.pdf

Texas Instruments TPS61299: https://www.ti.com/document-viewer/tps61299/datasheet

Synchronous Boost Converter 
with Average Input Current 
Limit

The TPS61299 is a synchronous 
boost converter with a 95nA ultra-low 
quiescent current and an average input 
current limit. The device provides a 
power solution for portable equipment 
with alkaline batteries and coin 
cell batteries. This device has high 
efficiency under light-load conditions 
to achieve long operation time and the 
average input current limit can avoid 
battery discharging with high current. 
The TPS61299 has a wide input voltage 
range from 0.5V to 5.5V and an output 
voltage range from 1.8V to 5.5V. The 
device has different versions for the 
average input current limit from 5mA to 
1.9A. The TPS61299 with a 1.2A current 
limit can support up to 500mA output 
current from 3V to 5V conversion and 
achieve approximately 94% efficiency 
at 200mA load. 

• Input voltage range: 0.5V to 5.5V
• 0.7V minimum input voltage for start-

up
• Input operating voltage down to 

150mV with signal VIN > 0.7V
• Output voltage range: 1.8V to 5.5V 

VSEL pin select output voltage
• Average input current limit: 5mA; 

25mA; 50mA; 100mA; 250mA, 
500mA, 1.2A, 1.9A (different versions)

• 95nA typical quiescent current from 
VOUT

• 60nA typical shutdown current from 
VIN and SW

Texas Instruments
www.ti.com

http://www.st.com
https://powerdensity.com/wp-content/uploads/2022/08/SZPL3002A-Product-Brief-Prelim.pdf
https://www.st.com/resource/en/datasheet/l6983i.pdf
https://www.ti.com/document-viewer/tps61299/datasheet
http://www.ti.com
https://powerdensity.com
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By
Brian Millier
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How Did They Do It Back Then?How Did They Do It Back Then?

Before Transistors

B oth at work and at home, we expect 
that most of the devices we use 
daily will contain some form of a 
microcontroller (MCU), or at least 

electronic circuitry. Sometimes this trend 
goes overboard, and we hear talk of toasters 
that are Internet-connected.

Many of these consumer and commercial/
industrial products were introduced 50-
75 years ago—prior to the invention of 
transistors, never mind complex digital 
integrated circuits. How did the engineers and 
designers of the era design products that, while 
not as sophisticated as those available now, 
nevertheless did the job adequately? When I 
began my career at General Electric Consumer 
Products Division, I quickly discovered just 
how cheaply electromechanical components 
could be made, and that these components 
could still do the job in a reliable way. 

In this column, I’m going to describe several 
components and circuits—found in industrial, 
scientific, and consumer products—that 
I’ve worked with and found to be extremely 
ingenious. Let’s start close to home.

A HIGH-POWERED KITCHEN
Electric stoves have been around for 100 

years. Regardless of their vintage, they all 
contained a number of “surface units” for 

heating foods in pots and skillets. These 
heaters consume about 3000W, on average, 
and ideally should be finely adjustable in 
terms of heating power delivered. Early 
stoves contained surface units in which the 
spiral Calrod heating element was made up of 
three discrete heaters of different wattages. 
A complex mechanical switch would “dial in” 
eight different combinations of these three 
elements, providing a rough control of heating 
power. This wasn’t ideal, and in time, the 
infinite heat switch was invented (Figure 1).

Using modern components and techniques, 
controlling an AC-powered 3000W heater today 
would likely be done with a PWM generator 
feeding a solid-state relay (which is basically 
an opto-coupled TRIAC mounted in a heatsink 
enclosure). In the 1970s, when infinite heat 
switches were introduced for stoves, SCRs 
were quite new and still expensive, and 
TRIACS were not available. 

Referring to Figure 2, SW1 is a set of high-
current contacts, one of which is connected 
to a length of bimetallic strip. A bimetallic 
strip is made up of two dissimilar metals 
that each have different thermal coefficients 
of expansion. When heated, a bimetallic strip 
will bend in proportion to how much heat is 
applied. In this device, the bimetallic strip has 
a small heater coil wound around it. The dial 

PICKING UP MIXED SIGNALS

As part of Circuit Cellar’s celebration 
of its 400th issue, Brian looks back 
at some ingenious electromechanical 
devices that performed necessary 
functions, using existing technology. 
Many were so clever that they 
are still in use today—even while 
microcontrollers are used in just 
about everything.

FIGURE 1
This is an infinite heat switch—
an electromechanical device 
capable of handling 3000W with 
a resolution that would normally 
be associated with a PWM circuit. 
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of an infinite heat switch is connected to a 
contoured cam. When it is moved from the off 
position, it closes both SW2, the on-off switch, 
and SW1 containing the bimetallic strip. At 
this point, the 240VAC will pass through both 
switches and power up both the surface 
unit and the small heater wound around the 
bimetallic strip. When this small heater heats 
up it will bend the bimetallic strip so that it 
opens the contacts of SW1. Both this small 
heater and the surface unit will then stop 
heating, and in a few seconds, the bimetallic 
strip will cool off and SW1 will again close. 
While this diagram doesn’t accurately reflect 
the shape of the cam, suffice it to say that as 
you rotate the dial knob for more heat, the 
cam will adjust the position of the bimetallic 
strip in such a way that it must heat up more 
to open SW1’s contacts. The whole on-off cycle 
will take 10-40 seconds, depending upon the 
dial setting, and the PWM duty cycle will vary 
from about 10% to 100% in fine increments.

When I first encountered them in the mid-
1970s, infinite heat switches were made by 
Robertshaw, and they still are. Back then, I’m 
sure they cost no more than a few dollars to 
manufacture—a tiny fraction of what it would 
cost to perform the same function using PWM 
plus a solid-state relay. From experience, I 
know that they can easily last 20+ years in 
normal service. They are still in common use 
in stoves today. 

THEY PUT VACUUM TUBES IN 
CARS?

Even if you are too young to have ever used 
them, most electronics people know what 
vacuum tubes are. Compared to transistors, 
they get hot, draw much more power, and 
are a lot more susceptible to shocks and 
vibration. They’re not something you would 
expect to see in a car. However, car radios 
were a popular option from the 1950s onward. 
While transistors had been invented in 1947, 
they were neither robust nor high enough 
in performance to operate in car radios for 
many years. So, for at least a decade or so, 
vacuum tubes were used in car radios. 

Vacuum tubes often use 12V for their 
filaments, which matches the 12V car battery. 
However, to operate efficiently, they need 
at least 100VDC for their plate electrode. 
Using a “B” battery (around 100V), which 
was employed in old home radios, was not 
practical in a car. So, the 12VDC battery 
voltage had to be converted into AC, stepped 
up using a transformer, and then rectified 
back to a high enough DC potential to run 
the vacuum tubes. It would be easier to do 
this in today’s cars since alternators are now 
used to charge the battery. Internally they 
produce AC voltage which is rectified before 

it leaves the alternator. That AC voltage could 
feed a transformer directly, but automotive 
generators of that era produced DC voltage 
only.

Figure 3 shows a picture of the device 
that made vacuum tube car radios possible. 
It was called a vibrator. This one was made by 
Cornell Dubilier, which was well-known for its 
capacitors. I’m guessing Cornell Dubilier got 
into the vibrator business because it already 
used those cylindrical cans to house its power 
supply electrolytic capacitors. 

Figure 4 is a schematic diagram of the 
circuit using such a vibrator in a car radio. 
Basically, a vibrator is like a two-pole relay, 
designed to handle being switched on and 
off rapidly, and for a long duration. The 
12V battery voltage is applied to two of the 
vibrator’s four terminals. The current passes 
through a set of N.C. contacts to the vibrator 

Surface Unit

240 VAC

Bimetal Strip
Heater

Contoured 
Cam

On-Off
Switch

Pilot Light
(neon)

SW1

SW2

FIGURE 2
This is a block diagram of an infinite 
heat switch. In the text, I describe 
how it operates.

FIGURE 3
This is a vibrator unit that was used 
in early car radios to provide enough 
voltage to operate the vacuum tubes 
that were used in car radios at the 
time.
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coil, which energizes it. Once energized, it 
opens that N.C. contact, and the relay coil 
is deactivated. This part of the vibrator acts 
much like the old electromechanical buzzers 
used in the past, except that here we don’t 
want to hear the buzzing sound—therefore 
the can surrounding this vibrator is sound-
insulated. I can’t recall the frequency that 
these vibrators operated at, but it was 
somewhere between 50 and 100Hz. The 
second set of contacts is SPDT and basically 
switches opposite ends of the radio’s power 
transformer to chassis ground. With 12VDC 
from the battery supplied to the center tap 
of the primary, we are effectively supplying a 
square wave AC voltage to the transformer’s 
primary winding. The voltage from the 
transformer’s high-voltage secondary is full-
wave rectified (by a vacuum tube rectifier, if 
my memory serves me correctly) and filtered.

It speaks well of the engineers at the time 
that they could design an AM radio that would 
pick up distant RF signals clearly while in the 
presence of electromagnetic interference 
(EMI) from the spark plugs, distributor, 
generator commutator, and the contacts 
in the vibrator itself. Vibrators were not 
expensive in those days and lasted for many 
years.

SLOWLY DRIFTING AWAY
After learning about the automotive 

vibrator in the last section, can you think of 
another place where such an electromechanical 
device could be used? Let’s consider industrial 
process controllers, specifically ones in 
which temperature is controlled—possibly 
high temperatures in large ovens. The only 
temperature sensors capable of withstanding 
high temperatures—rugged and can work 
with long signal leads—are thermocouples.

Thermocouples produce only low millivolt-
level signals even over a high-temperature 
span. These tiny signals must be amplified 
greatly before they can be used in some 
form of PID controller. However, amplifying 
a slowly changing DC signal by a large 
amount requires a high-gain amplifier, with a 
frequency response down to DC. Modern op-
amps with zero-drift features are common 
today, but they weren’t 30-70 years ago when 
such controllers were required. It was difficult 
to design a high-gain DC amplifier that did 
not suffer from some amount of drift over 
temperature/time (especially using vacuum 
tubes). This drift could severely affect the 
accuracy of the controller, and many processes 
are critical regarding process temperature.

If you instead consider a high-gain AC 
amplifier, you can see that a multi-stage 
amplifier (needed for high gains) can have its 
stages coupled via capacitors. Any DC drift in 
a particular stage will not pass through this 
capacitor to subsequent stages. Therefore, 
a good solution is to convert the low-voltage 
thermocouple signal into an AC voltage, 
amplify it with a high-gain, drift-free AC 
amplifier, and then convert it back to DC again 
at the output.

Today, such switching is generally done 
using MOSFETs. They have fairly low RDS 
values, and don’t generate any DC offsets of 
their own (which would be meaningful given 
the low voltages produced by thermocouples). 
They can suffer from a phenomenon known 
as charge injection, but this isn’t much of a 
consideration at the low switching frequencies 
needed for this type of application. 

However, MOSFETs weren’t around back in 
that era. Instead, if you consider the automotive 
vibrator, it has all the attributes needed to 
do the DC-AC conversion. In particular, it 

FIGURE 5A,5B
These are two photos of choppers 
used in early DC amplifiers. They 
converted the DC voltage into AC, 
where it was amplified by an AC 
amplifier, and then synchronously 
rectified back to DC using a separate 
set of contacts.
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older car radios containing vacuum 
tubes.
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has basically 0Ω contact resistance when the 
contacts are closed, and it doesn’t generate 
any offset voltages of its own. And there’s 
another bonus: If you add a second SPDT set 
of contacts to the vibrator design, you can use 
that set to synchronously rectify the AC signal 
at the output of your AC amplifier. Again, no 
offset voltage errors are introduced, as these 
are only mechanical contacts.

In this case, such devices were called 
choppers. Figure 5A and Figure 5B are 
examples of such choppers. In a car, there 
was only a DC voltage available, so the 
vibrator needed its own set of contacts to 
switch the coil on and off rapidly. My memory 
is a bit hazy on this now, but I believe that 
the chopper’s coil was fed an AC voltage and 
the switching was performed at 60Hz (at least 
here in North America). 

I had some spare choppers in my lab, 
which were used in chart recorders (another 
device that needed to be able to amplify tiny 
DC signals in a stable, drift-free manner). 
They were somewhat smaller than the ones 
shown in Figure 5. They didn’t turn my lab 
into a museum when I retired, and in time, 
all of these older parts were disposed of, so I 
have no photos.

A LIGHTBULB MOMENT 
I recently read that the USA is banning 

incandescent light bulbs. Today, of course, 
the media tries to make a controversy about 
everything, so there is some confusion about 
whether this is a ban or just new, stringent 
energy efficiency regulations. One way or the 
other, almost no one uses incandescent lights 
for lighting any longer, since LEDs are cheap 
and vastly more energy efficient. 

Figure 6 is a photo of a miniature light 
bulb like that which played a significant 
role in the first product ever produced by 
Hewlett-Packard—now a large multinational 
conglomerate in the computer/electronics 
industry. No, they didn’t start out producing 
light bulbs. Instead, Bill Hewlett and David 
Packard’s first product was an audio signal 
generator which was initially manufactured 
in David Packard’s garage in Palo Alto. You 
can Google “HP 200A” for a photo of the 
original HP 200A generator, but those photos 
are not clear enough to meet Circuit Cellar’s 
publishing standards.

High-quality audio signal generators were, 
and still are, essential in the audio industry. In 
particular, low waveform distortion and a wide 
frequency range are required. Getting both 
qualities simultaneously makes the design 
more difficult, but the Wien bridge oscillator 
configuration is one of the better choices. 
Figure 7 is a schematic diagram of the Wien 
bridge oscillator in HP’s original design. The 

frequency-determining components are 
R1,C1 and R2,C2, where R1=R2 and C1=C2. 
Capacitors C1,C2 are two sections of an air-
variable capacitor and R1,R2 are switched by 
the frequency range switch. The combination 
of vacuum tubes V1 and V2 provides AC voltage 
gain. For a Wien bridge oscillator, the gain of the 
amplifier must be >3 for the circuit to sustain 
oscillation. However, if the gain is too large, the 
oscillator will saturate. But, even before such 
saturation, the sine wave amplitude would not 
remain constant if the gain changed.

Incandescent bulbs have a large positive 
temperature coefficient. That is, the hotter 
they get, the higher their resistance becomes. 
For lighting purposes, this is a double-

FIGURE 6
This is a miniature incandescent 
lamp like the one that was an integral 
part of H.P.’s first product: the HP 
200A audio signal generator.

FIGURE 7
This is a schematic diagram of the Wien bridge oscillator circuit used in the HP 200A audio signal 
generator.
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edged sword. On the plus side, as the AC 
mains voltage varies (from time of day and 
load conditions), an incandescent bulb will 
compensate, to a fair degree, in terms of 
brightness. The downside is that the bulb’s 
filament is always cold when you first turn it 
on, and its lower cold resistance leads to a 
momentary current surge at turn-on. That’s 
why incandescent lamps often burn out right 
after you turn them on.

From Figure 7, you see that the bulb is 
placed in the cathode circuit of V1. The AC audio 
signal is coupled to the lamp via R24 and pot 
R25. When the signal amplitude increases, it 
feeds more power to the lamp, increasing its 
resistance. The higher the resistance present in 
the cathode return path to ground, the lower the 
gain of V1. This negative feedback, combined 
with the particular characteristics of the R19 
lamp, act to produce a constant amplitude 
audio signal—even when switching ranges. 

While there are other, more complex ways 
of building a Wein bridge audio oscillator with 
a constant output amplitude, none of these 
alternative circuits are even close to the 
simplicity and cost of the HP 200A’s light bulb 
scheme. The HP 200A was granted US Patent 
#2268872 in 1942.

Figure 8 is a photo of the somewhat newer 
HP 200CD which uses somewhat different 
circuitry from the original HP 200A design, but 
still uses vacuum tubes and the incandescent 
light bulb. There was one in my lab when I 
arrived, which I used, and which was still 
working when I left 30 years later.

THE GLOVES CAME OFF
I have another clever use of light bulbs. 

In the Department of Chemistry at Dalhousie 
University where I worked, there were 
numerous glove boxes, like that shown in 
Figure 9. In case you’re wondering, the gloves 
don’t extend outward like that when you are 
using them! The enclosure is hermetically 
sealed and often filled with a gas other than 
air—for chemical and/or safety reasons. The 
gas used may be expensive, so for that and 
safety reasons, it’s useful to be able to know 
if there are leaks in either the enclosure or 
the gloves themselves. If you cut a hole in 
the glass envelope of an incandescent lamp, 
you can operate it with something other than 
the vacuum under which it’s accustomed to 
operating. If this modified lamp were operated 
in our normal atmosphere, containing oxygen, 
it would quickly burn out due to oxidation 
of the filament. You’ll have noticed this if 
you’ve broken a light bulb that’s powered up. 
However, many of the gases used with glove 
boxes do not oxidize the lamp’s filament, so 
you could power up this modified bulb in that 
atmosphere and it wouldn’t burn out.

FIGURE 8
This is an HP 200CD audio signal 
generator. It was a bit later model 
of the HP 200A. I used one in my lab. 

FIGURE 9
This is a glove box apparatus that is used in chemistry labs to handle chemicals either that are dangerous 
to humans or that must be handled in an atmosphere made up of gas(es) different from Earth’s normal 
atmosphere.
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Figure 10 shows a simple schematic of such 
a leak alarm. The 120V mains power is applied 
to the incandescent bulb (a 120VAC 7W night light 
bulb works well) through resistor R5. The AC 
voltage across R5 is adjusted downward by pot 
R3 to provide 2.0VDC after rectification/filtering 
by D1 and C1. Under normal conditions, the 
lamp is lit up and there is enough voltage across 
R5 to turn the optocoupler on. Under these 
conditions, the 2N3904 does not conduct and 
the alarm buzzer doesn’t sound. If the glove box 
leaks and lets in oxygen from the outside air, 
the lamp quickly burns out and the optocoupler 
shuts off. This raises the voltage on the base of 
the 2N3904 and the SP1 buzzer sounds. Also, a 
positive 5V can trigger an optional timer module 
to start accumulating elapsed time. This allows 
the glove box operator to know for how long the 
proper gas atmosphere has been lost, and to 
act accordingly. 

Like HP’s audio oscillator, this design, 
using a light bulb, is much simpler than other 
ways of accomplishing the same function. 
I built quite a number of these devices for 
some of the many glove boxes that were used 
in our chemistry department.

MECHANICAL ACTUATORS
Aside from robotics, there are many other 

areas in which mechanical actuators are 

needed to perform some physical function. 
Depending upon the task, either stepper 
motors or servomotors might be the best 
solution. Linear actuators are another 
common solution, but if they are electrically 
driven (not pneumatic or hydraulic), they 
would generally be driven by either a stepper 
motor or a servomotor. 
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FIGURE 10
This is a schematic of a simple glove 
box leak detector based on a simple 
miniature incandescent light bulb. 
Like the HP 200A, it’s a novel use for 
a simple light bulb.
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In almost all cases, you need some 
positioning information fed back to the 
controller. This sensor would often take the 
form of a digital rotary encoder, or maybe 
just a potentiometer if the motion was limited 
to <360 degrees of rotary motion. Alternately, 
a linear potentiometer could be used if the 
motion was linear.

What if we add the criteria that there must 
be some haptic feedback as well? In simple 
terms, think of haptics as the controller needing 
to know how much resistance the actuator 
is encountering when it’s moving toward its 
targeted position. Possibly add to this the 
need for limit switches so the actuator doesn’t 
destroy something when it tries to move beyond 
some mechanical limit. Suddenly, the design 
of the controller/actuator becomes quite a bit 
more complicated. Modern controllers with 
powerful MCUs and intelligent sensors can 
handle this without too much difficulty. However, 
before transistors and IC chips, controlling an 
actuator electrically was difficult enough that 
pneumatics/hydraulics were often used instead, 
particularly in industry.

There was, however, one ingenious device 
called the selsyn, invented back in 1925, that 
handled all of the following:

• Physical motion (actuator)
• Position feedback
• Haptic feedback

Figure 11 is a photo of a small selsyn. It’s 
configured like a small three-phase motor, with 
an additional coil (terminals R1,R2) mounted 
on the device’s rotor and connected externally 
via slip-rings. Its mechanical rotary output 
comes from the threaded shaft on the right. 
The stator is made up of three Y-connected 
coils (S1,S2,S3) spaced 120 degrees apart. 
While a selsyn is a motor, it can equally act as 
a generator. In fact, selsyns are always used 
in pairs (one transmitter and one or more 
receivers). Figure 12 is a schematic diagram 
of a basic selsyn receiver-transmitter pair. 
The transmitter’s S1,S2,S3 coils are connected 
to like-named coils on the receiver. When an 
AC excitation voltage is applied to each unit’s 
rotor coil, it will induce a voltage in the three 
stator coils. The phase of each of those signals 
will be displaced by 120 degrees and will vary 
as the transmitter shaft is rotated. These three 
voltages are applied to the receiver, which will 
cause the receiver’s rotor to move to match the 
position of the transmitter.

Selsyns are commonly used to transmit the 
rotary position of some remote mechanical 
device to a receiver, which is configured with a 
dial, allowing it to be read like a meter. This is 
referred to as a torque system. However, you 
can also use them as an actuator: a person 
can rotate the transmitter selsyn shaft, and 
the receiver selsyn will move to match that 
rotational position. If the receiver encounters 
some resistance in achieving that position, 
that will be felt by the person rotating the 
transmitter (haptic feedback). The amount 
of torque developed by the receiver selsyn is 
small—somewhat limited by the torque that 
the operator can exert on the transmitter. 
This is called a control system. Optionally, the 
transmitter’s output signals can be amplified 
and fed to a servomotor if a larger torque is 
needed. During the Second World War, the 
term selsyn was replaced by the term synchro.

As a teenager, I was fortunate enough to 
get a truckload of electronic military surplus 
equipment removed from the DEW line in 
northern Canada. I was delighted to find a lot 
of military-grade 6LC, 12AX7, 12AU7 vacuum 
tubes, power transformers, and audio power 
transformers. These all made their way into 
guitar and hi-fi amplifiers that I built. I came 
across a lot of selsyns as well, but didn’t know 
what they were used for until much later in 
life. There was no Google back then.

MUSICAL INSTRUMENT EFFECTS 
PROCESSING

I mentioned my interest in guitar amplifiers 
in the last section. From the 1960s onwards, 
electric guitars and organs played a large role 
in rock and popular music. Using only vacuum 
tubes and early transistors, many sound 

AC 
Excitation

Torque Transmitter Torque Receiver

S1

S2S3 S3

R1

R2 R2

FIGURE 12
This is a schematic diagram showing how two synchros are wired together.

FIGURE 11
This is a selsyn unit—they were 
later re-labeled “synchro.” Two such 
units, wired together, can transmit 
the rotary position of one unit to be 
displayed on the other unit.
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“effects” were invented back then that are 
still popular and routinely used with electric 
guitars and organs. In general, these fall into 
four categories:

• Tremolo (amplitude modulation)
• Vibrato (frequency modulation)

• Phasor/flanger (phase modulation/comb 
filtering)

• Reverb/delay (basically introducing echo 
into the signal, over time)

Let’s examine the vibrato effect—
specifically as it was implemented in the 

FIGURE 13
This is a photo of the tonewheel 
generator as was used in the famous 
Hammond B3 organ. The tonewheels, 
which have “teeth” something like 
gears have, are clearly visible, as are 
the associated pickup coils.

LAUNCHING... WHAT’S NEXT!
Launching new technology is more complex than 
ever. When it comes to navigating today’s design 
and supply chain challenges, Avnet is at the heart 
of it all. Whether you’re just starting on a design 
or working to get your product to market, Avnet 
delivers the right mix of technology and expertise 
to help your business succeed. We deliver what’s 
next in design, supply chain and logistics so you 
can deliver what’s next for all of us. 

Learn more at avnet.com

https://avnet.com
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famous Hammond tonewheel organs such as 
the B3. Briefly, Hammond tonewheel organs 
generate the frequencies needed for each note on 
the keyboard (plus a lot of selectable harmonics) 
using metal wheels, which are machined with a 
sine-wave pattern along their circumference. 
These wheels are rotated at a fixed speed 
by a synchronous motor, and a pickup coil is 
placed near the wheel’s circumference, which 
generates a sine wave at a specific frequency. 
Depending upon the model, there are 91 or 
more of these wheels/pickup coils. That amount 
is needed to produce the fundamental tones 
for all of the notes within the keyboard’s range, 
plus many user-configurable harmonics. Figure 
13 is a photo of the tonewheel generator 
assembly with the wheels and coils clearly 
visible. This sound generation method is known 
as additive synthesis and is still one of the best 
synthesis methods available, even using today’s 
complex digital integrated circuits. In Circuit 
Cellar #328, I designed a Teensy MCU-based 
Tonewheel organ synthesizer. There is much 
more background on these organs contained in 
that article (“Simulating a Hammond Tonewheel 
Organ—Part 1: Mimicking a Mechanical Marvel,” 
Circuit Cellar 328, November 2017) [1].

A big advantage of the tonewheel organ was 
that every note was properly in tune, without 
any adjustments needed, due to the fact that 
the tonewheels were rotated by a synchronous 
motor driven by the very accurate 60Hz power 
mains. The downside of this is that there was 
no easy way to introduce vibrato—a slow 
modulation of the note’s frequency.

Today, with fast MCUs and large amounts 
of RAM and such, we could take the digital 
signal representation of a fixed-frequency 
sine wave, and introduce vibrato as follows:

• Feed the digital sound samples into a large 
circular RAM memory buffer.

• Maintain input and output buffer pointers 
into that buffer.

• Slowly manipulate the position of the 
output pointer with respect to the input 
pointer in such a way as to introduce a 
phase/frequency variation.

This is a bit of a programming effort 
but quite doable with today’s MCU and 
memory devices. But how would you do 
this back in the 1930s when the Hammond 
tonewheel organ was designed? Hammond’s 
solution was quite ingenious. Figure 14 is 
the electrical schematic for what was called 
the Vibrato scanner. The electrical signals 
representing the notes being played enter 
at terminal 2, to the left. You can see that 
there is a whole series of LC networks that 
are series-connected. The time constant of 
each of these LC networks is large enough 
to introduce a significant phase shift to the 
incoming signal. This phase shift steadily 
increases as you move from left to right 
in the LC network. At each “tap” of the 
cascaded LC network, there is a signal that 
goes to what is labeled the scanner. For now, 
consider that to be a 16-position switch. 
The scanner switch is rotated by the same 
synchronous motor that turns the tonewheel 
generator. As the scanner rotates, it will 
select various taps of the LC network, and 
the varying phase shift applied to the input 
signal will be enough to produce a pleasant 
vibrato effect. There is also a switch that 
can select which switch taps are fed by the 
LC network—this allows for various amounts 
(depths) of vibrato effect. 

Were the scanner to actually be a 
mechanical switch, it would produce 
frequency variations in discrete steps. Also, 
the switch would have to be make-before-
break or the signal output would interrupted 
with small intervals of silence. 

Using a mechanical switch wouldn’t work 
in practice. The digital vibrato solution, that 
I presented above, would have thousands of 
elements in the buffer array, making each 
sample close together in time. Thus, you could 
achieve a smooth vibrato response. Here we 
only have 16 “switch” positions on the scanner 
and that isn’t nearly enough resolution.

Figure 15 is a picture of the inside of the 
Scanner. You can see that at each scanner 
position, there is stacked a series of copper 
plates. While not visible, the rotator part 
of the scanner is also a series of stacked 
copper plates, and is spaced between the 
fixed plates. This forms an air capacitor 
which results in basically a variable 
capacitor between the rotator and each of 
the 16 fixed scanner capacitors (three of 
which are removed in this photo). As the 
scanner rotates, it will smoothly mix in 
various proportions from any two adjacent 

Additional materials from the author are available at:  
www.circuitcellar.com/article-materials

Reference [1] as marked in the article can be found there. 

Signal input

Signal Output

FIGURE 14
This is a schematic diagram of 
the vibrato circuit in a Hammond 
tonewheel organ. The heart of this 
circuit is the cascaded LC network 
and its associated scanner switch.

http://www.circuitcellar.com/article-materials
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FIGURE 15
This is a photo of the vibrato circuit’s 
scanner. This is basically a “switch” 
using capacitive coupling. See the 
text for more details on why this was 
so ingenious.

fixed scanner capacitors. This will provide a 
smooth vibrato signal.

The capacitance of a small air variable 
capacitor, such as those 16 found here, is 
quite small. I don’t think that specification 
is available, but I would estimate it to be in 
the tens of picofarads. Given such a small 
coupling capacitance, the impedance of the 
amplifier following it must be high or there 
would be poor low-frequency response. Since 
they used vacuum tubes for the amplifiers in 
these organs, the high-impedance criterion 
wasn’t hard to meet. However, the shielding 
of both the scanner assembly and the shielded 
cable leading to the following amplifier had to 
be good, or there would have been excessive 
hum in the organ’s output signal.

The sound of Hammond tonewheel organs 
was so exceptional that they produced about 
2 million of them between 1935 and 1975. 
Even though the newest of them would now 
be 50 years old, many thousands of them are 
still in use. They were originally designed for 
churches, but I suspect that the remaining 
ones are used mostly by rock/pop music bands. 
If you ever had a chance to see the complex 
mechanical components inside of one of these 
organs, as I have, you would be astonished 
to know that they were sold for about $1200 
dollars when first introduced in 1935. 

CONCLUSION
This article was intended as a special one-

off for the 400th edition of Circuit Cellar. 
However, while looking back over the last 50 
years in which I’ve been active in electronics, 
I collected many other ideas/devices like the 
ones described here—more than would fit 
into one column. If there is reader interest, I 
may sprinkle these other ingenious design 
ideas into future Circuit Cellar editions. I hope 
you enjoyed the trip back in time.  

https://www.cc-webshop.com
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Embedded System Essentials Embedded System Essentials 

How CHERI Helps Secure How CHERI Helps Secure 
Your C/C++ CodeYour C/C++ Code

T his column normally covers how to 
attack embedded systems. For this 
special issue, I’m taking a step back to 
look at how to build secure embedded 

systems. Ultimately, it’s the goal of most 
embedded engineers to improve their systems. 
I talk about embedded attacks because 
understanding attacks is an important step in 
the process. But once you know the attacks, 
what do you do next?

In this article, I’m going to introduce a 
new technology called Capability Hardware 
Enhanced RISC Instructions (CHERI), which 
is an extension to microcontroller (MCU) 
Instruction-Set Architectures (ISAs) that 
builds in capabilities for fine-grained memory 
protection and software compartmentalization. 
The exciting thing about CHERI is that it 
provides a way for you to take existing C/C++ 
code (which famously ends up with lots of 
security vulnerabilities) and provide protection 
against entire classes of attacks, including ones 

I’ve shown you before. This means the “what 
you do next” step may require little effort 
beyond recompiling your code (and hoping your 
RISC-V core has the CHERI extensions).

CHERI technology has been around for 
a few years, and Arm has even built some 
demonstration boards (called the “Arm 
Morello”) that include this technology. More 
recently, an open-source RISC-V specification 
called CHERIoT was produced, and a 
demonstration RISC-V core called CHERIoT-
Ibex was released which allows you to 
experiment with this on an FPGA development 
board. The technology is even easier to access 
thanks to a new project called the “Sunburst 
Project,” which will have a special-purpose 
development board (the “Sonata Board”), 
designed by yours truly. Watch the lowRISC 
website for future details of this design. The 
board design will be open-source, so you can 
build one yourself if you’re handy with the 
soldering iron!

Most embedded attacks either start with or end with illegal memory accesses. The 
typical linear address spaces of most microcontrollers, combined with the many years 
of non-memory-safe legacy C/C++ code, mean that this will be a threat for many years 
to come. A newer technology called CHERI is trying to add memory safety to your 
existing code, and a recent open-source RISC-V version called CHERIoT has turned it 
into something you can experiment with today.

By By 
Colin O'FlynnColin O'Flynn

On an FPGAOn an FPGA
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ATTACK THE MEMORY
Before we dive into the details of what 

CHERI is, let’s look at how the most common 
embedded system attacks work. Most attacks 
on embedded systems exploit improper 
access to memory. This works in practice 
because of two simple facts:

1. Most embedded systems have one memory 
space containing everything.

2. Memory protection, if enabled at all, may 
not be fine-grained enough to prevent 
an attacker from reading (or writing) 
sensitive data.

Buffer overflows are a good example of 
a simple attack here. The basic idea of a 
buffer overflow is shown in Figure 1. In a 
buffer overflow, an attacker overwrites the 
end of a buffer, which ends up writing data 
onto the stack. This stack normally includes 
return addresses, which allows an attacker 
to change the control flow of the program. 
In other cases, the attacker is able to write 
executable code that the victim jumps to and 
executes.

Other common attacks include reading 
past the end of memory, or reading memory 
they shouldn’t have access to. This might be 
possible with logic flaws, such as improperly 
checking the bounds of a request. But also 
many of my fault injection attacks exploit 
this, like when I showed you how I read the 
private key from a Bitcoin wallet using a fault 
injection attack. See my article in Circuit 
Cellar #346 (“Attacking USB Gear with 
EMFI: Pitching a Glitch” Circuit Cellar 346, 
May 2019), or my paper “MIN()imum Failure: 
EMFI Attacks against USB Stacks,” links 
to both of which are available on Circuit 
Cellar’s Article Materials and Resources 
webpage [1][2]. 

All of these attacks are successful because 
the processor executing a read (or store) 
instruction has no context about what the 
command should or should not have access 
to. Generally, a low-level read (or store) 
instruction has access to a huge range of 
memory. Processors may have a secure and 
unsecure (or privileged and unprivileged) 
mode that provides some bounds, but it still 
leaves the problem that a single flaw in the 
secure mode gives access to the entire secure 
memory space. 

EVERYTHING OLD IS NEW AGAIN
In an alternate history, we never would 

have these problems at all. A friend introduced 
me to the (failed) Intel iAPX 432 processor 
from 1981, a processor that was built with 
object-oriented programming supported in 
hardware. Circuit Cellar’s Article Materials 

and Resources webpage includes a link to an 
interesting article detailing this device [3]. 
It’s too much to cover in a few paragraphs.

The processor is described as “anti-RISC” 
to set the stage for what comes next. As 
an example of the complexity, the variable-
length instructions could be from 6 to 321 
bits, and didn’t need to be stored byte-
aligned. All this complexity did buy you a fully 
memory and capability-safe processor, long 
before people were thinking seriously about 
computer security.

Fundamentally, the iAPX 432 implemented 
the idea of instructions operating on objects. 
This means it was impossible to “read beyond” 
memory, since memory existed only for the 
given purpose. Like many failed good ideas, 
the practical implementation left much to be 
desired. The implementation choices resulted 
in such excessive performance hits that it 
simply wouldn’t survive in the marketplace.

Forty years later, CHERI offers memory and 
capability-safe processors as well. But unlike 
the iAPX 432, it offers it in a RISC format, 
and with a minimal overhead. Work has been 
done to ensure this overhead remains small 
even with practical considerations, such as 
how the DRAM refresh cycle impacts trying 
to add memory tagging. This practical focus 
is what makes CHERI exciting (and what 
makes it unlike the iAPX 432)—it’s not just a 
research project, but a complete set of tools 
including specification, compilers, debuggers, 
reference cores, and more.

TAG YOU’RE IT
When discussing the previous attacks, 

it often comes down to: an attacker should 
only be able to access a certain segment of 
memory. A pointer should point to an 8-byte 
buffer for example, but an error in the bounds 
check logic lets them access memory beyond 

FIGURE 1
Writing to or reading from memory 
is a constant source of problems in 
embedded systems.
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the end of the buffer. Or a user passes a 
string to a print() call which is missing the 
null, resulting in the print() call dumping 
additional sensitive data. 

One way to solve this is by using memory-
safe languages (such as Rust). These languages 
provide the memory with protection as part of 
the output of the compiled code, and provide 
language syntax to use these features.

The big downside to using a memory-safe 
language is it requires rewriting your code in 
a memory-safe language. If you have many 
years of legacy code to support, this can be 
no small feat. Instead of doing this with the 
compiler output, CHERI does this in hardware 
with tags.

The tag format in Figure 2 shows that 
the pointers being referenced suddenly have 
a few extra fields. The inclusion of a bounds 
field means an attacker no longer has access 
to arbitrary lengths of memory. This bounds 
is somewhat cleverly encoded to reduce the 
bit-space needed, by using a “floating-point” 
or “logarithmic” type encoding. That means 
you have more precision at smaller boundary 

sizes, but for larger blocks must pick the 
closest boundary.

The validity tag is a single bit indicating if 
the memory access should be used at all, and 
the type and permission provide additional 
granularity. Memory can be made read-only or 
disallow execution through the permissions.

The validity tag in Figure 2 isn’t shown as 
being in the same memory space, as it’s held 
in an out-of-bounds memory. Modifying this 
requires special instructions, which ensures that 
an attacker cannot simply mark invalid memory 
as valid. The validity tag is cleared by hardware 
when capabilities become invalid as well.

Beyond memory safety, CHERI enables a 
variety of other security features, including 
that:

•	 It makes it easy to compartmentalize your 
software so that tasks can only access 
their own memory.

•	 It makes it possible to easily pass pointers 
which allow read-only access (enforced 
by the core itself and not just a polite 
request).

•	 It can seal sections of memory to prevent 
modification. 

The best way to see these in action is 
to look at a few examples, and I’ll use the 
CHERIoT-RTOS project for that.

USING CHERIOT
The CHERIoT-RTOS project is a Real-Time 

Operation System (RTOS) that supports CHERI 
features to provide a high level of security. 
To be clear, you don’t need to use CHERIoT-
RTOS to access the security features of 
CHERIoT. But it provides a useful framework 
for experimenting with CHERIoT.

The CHERIoT-RTOS repository includes 
numerous examples of using the CHERI 
extension. These can run on the CHERIoT 
RISC-V core, be it an emulator or the real 
CHERIoT-Ibex soft core which you can 
program into an FPGA board. Soon this will 
be even easier to experiment with on the 
open-source Sonata Board, which includes all 
required debugging hardware.

I’ll bring up a simple example so you can 
get an idea of how the CHERI extensions work. 
To start with, let’s look at simply printing 
a few different strings. This is shown in 
Listing 1, and recreates the hello.cc file from 
the error-handling examples that are part of 
the CHERIoT-RTOS repository. 

You’ll see this includes three calls to the 
write() function, which sends data out 
the UART. The implementation is shown 
in Listing 2. Note that there is no special 
handling at all to check the validity of the 
passed memory. The only call is one that 
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FIGURE 2
CHERI adds bounds and capabilities to memory spaces.
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checks for a lock to prevent concurrent entry 
(which would be common in most RTOSs).

If a memory error occurs, a handler can 
capture that to print a useful debug message. 
But it doesn’t require you to add any memory 
safety check. The hardware provides memory 
safety checking, which is the entire point of 
CHERI.

Going back to Listing 1, the first call to 
write() is missing the null terminator. This 
results in the function attempting to read 
beyond the allowed memory space, and it 
shows how CHERI can help with this common 
problem. The second call to write() shows 
how CHERI’s capabilities give you more control 
over how data is used. Here the passed string 
doesn’t actually have read capability; it’s only 
allowed to be used for storing data. Again, 
the hardware prevents the write() function 
from reading from this memory.

A SUNNY FUTURE
If the examples in this column have piqued 

your interest, take a look at the CHERIoT 
repositories to see all the details of both the 
RTOS and core [4]. And watch the lowRISC 
website for more about the Sunburst Project, 

which will include the open-source Sonata 
board to make it easy to run the sort of demos 
I showed in Listing 1.

When it comes to practical usage, you’ll 
of course need CHERIoT implemented in some 
physical MCU. Right now, the answer to that 
isn’t as clear—I don’t know of any commercial 
MCUs planned with CHERI support. But 
hopefully, with a few more accessible 
examples, we’ll see it get picked up. But 
the soft-core CHERIoT-Ibex that is currently 
available has the advantage of not locking you 
into a specific configuration.

CHERI is an exciting technology to me 
because it doesn’t have to be turned on all at 
once. If you have a CHERI-enabled MCU, you 
can use your existing code almost as-is. From 
there, improving the security can be done in 
stages by adding in the additional features to 
your code. To me this is the main advantage 
of CHERI, and why it has a higher chance of 
finding commercial relevance. It doesn’t 
require you to rewrite your entire codebase at 
once. For better or worse, it might give all 
that memory-unsafe C/C++ code another 
lease on life in a world where more people are 
demanding security by design. 

LISTING 1
The “hello.cc” file from 07.error_
handling example// Copyright Microsoft and CHERIoT Contributors.

// SPDX-License-Identifier: MIT

#include “hello.h”
#include <fail-simulator-on-error.h>

/// Thread entry point.
void __cheri_compartment(“hello”) entry()
{
 // Try writing a string with a missing null terminator
 char maliciousString[] = {‘h’, ‘e’, ‘l’, ‘l’, ‘o’};
 write(maliciousString);
 // Now try one that doesn’t have read permission:
 CHERI::Capability storeOnlyString{maliciousString};
 storeOnlyString.permissions() &= CHERI::Permission::Store;
 write(storeOnlyString);
 // Now one that should work
 write(“Non-malicious string”);
}

LISTING 2
The write function of “uart.cc”/// Write a message to the UART.

void write(const char *msg)
{
 LockGuard g{lock};
 Debug::log(“Message provided by caller: {}”, msg);
}
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From the BenchFrom the Bench

Cellular, The Forgotten Wi-FiCellular, The Forgotten Wi-Fi

W hen I got my first Motorola 
flip cell phone, it was like Star 
Trek come alive. The Star Ship 
Enterprise’s communicator 

was similar in size. I installed a sound 
clip to imitate the familiar opening of the 
communicator when I opened my Star Tac flip 
phone. In the beginning you couldn’t call to 
the next town with out incurring toll changes. 
When you left your cell network coverage, 
there were extra roaming charges. Today we 
have unlimited calling, text, and data plans. 
Streaming your favorite movie/series requires 
a rather large bandwidth of streaming data. 
Everything today is data-oriented.

In my September 2023 article (”Local 
Isolation: Using the Sun’s Energy,” Circuit 
Cellar 398, September 2023) [1], I described 
a low-voltage solar energy system I built for 
lighting my Scout troop’s large storage shed. I 
described the battery I chose, and the Modbus 
protocol with RS-485 serial communication 
used for remote monitoring of the system’s 
performance (”sniffing” or listening to 

communication on the bus, and decoding 
each message). Then, in my October article 
(”Local Isolation Using the Sun’s Energy: Part 
2: Modbus Client,” Circuit Cellar 399, October 
2023) [2], I expanded on this node’s ability 
to do more than just listen and decode. 
This month, I discuss my use of a modern 
module, to make use of cellular networks for 
communication.

I initially considered repurposing an older 
cell phone to make a connection with the 
”Eagle’s Nest” solar project. However, the 
monthly fee for that would be greater than 
$100 a year. While that would certainly make a 
worthy project, there are much less expensive 
options today. Like the Wi-Fi transceivers that 
allow us to connect to a wireless network at 
home, modules are now available to make use 
of the cellular networks that are growing in 
connectivity everywhere. The data bandwidth 
we need for most applications is extremely 
low. We can therefore take advantage of the 
cellular system without the steep monthly 
charges. 

In Parts 1 and 2 of this series, Jeff introduced us to a novel 
method of providing light in a meeting place located in a 
remote area without electricity, by using a low-voltage solar 
energy system. Last month he described the use of Wi-Fi for 
communicating the system’s performance. In Part 3, he uses 
NoteCard, a cost-effective embeddable cellular module for 
sending data to his home from a remote area.

By 
Jeff Bachiochi

Part 3: Using NoteCard, an Part 3: Using NoteCard, an 
Embedded Communications ModuleEmbedded Communications Module
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RED, WHITE, AND BLUES
One of the companies that provides this 

service is Blues Inc. [3]. Let’s start with 
development tools. These are divided into two 
parts: the ”Notecard” and the ”NoteCarrier.” 
The Notecard (Figure 1) is an embeddable 
communications module; it has all the 
necessary hardware to handle global cellular 
communications over LTE-M, NB-IoT, or Cat-
1. The NoteCarrier is a prototyping PCB that 
contains a socket for the Notecard and for a 
microcontroller (MCU). 

While you can put a NoteCard on your own 
circuitry and save some more cash, I will 
take advantage of the NoteCarrier, because it 
supports a 24-pin Adafruit Feather breakout 
header. You’ll recall that I have been using the 
Adafruit Huzzah 32 module for this project 
since day one! If you want to use this with 
other MCUs, there are breakout points for 
every necessary connection to the NoteCard. 
NOTE: The newer starter kits feature a 
Feather-compatible MCU, the Swan, based on 
an ARM Cortex-M4.

The NoteCard can provide communications 
via one or more of these data networks, 
LTE-M, NB-IoT, GPRS, LTE Cat-1, and WCDMA. 
I am using the LTE CAT-M NoteCard for North 
America, which is perfect for medium-
throughput applications requiring low power, 
low latency, and/or mobility, such as asset 
tracking, wearables, medical, POS and home 
security applications. In my application, I 
have power via solar, but no Internet. Cell 
coverage in the area makes this solution 
possible. Let’s see how the NoteCard/Carrier 
combination is used.

To complement this hardware, Blues Inc. 
has a cloud-based site (”NoteHub”) that 
communicates with the NoteCard and syncs 
data both to and from the NoteCard. Last 
month’s project ended with our Modbus 

data sent via Wi-Fi to a MQTT server, using 
JSON objects [2]. At the time, you may have 
been thinking that there may have been 
better ways of sending this data. That was 
actually a setup for this month’s use of the 
cellular service. A JSON object is simply a 
way of passing data in a readable form, as 
in {solarPower:4}. While an object can 
contain multiple messages separated by 
commas, this single message indicates the 
variable solarPower is equal to a value of 
4. On the NoteCard end we have functions 
that can be called to pass and retrieve data. 
Data from NoteCard is placed into a NoteFile 
(.qo extension ) on NoteHub, and once 
received is added to a NoteFile with a .db 
extension. Data from a NoteFile with a .qi 

FIGURE 1
The NoteCard contains a complete cellular and GNSS (Global Navigation Satellite System) you 
can use in your own circuit or in a NoteCarrier via the M.2 high-density (0.5mm pitch) edge 
connector. 

FIGURE 2
Only 6 (4) connections 
from NoteCarrier are 
required to interface 
with the RS-485 
converter. The solar 
energy system used 
Modbus (using RS-
485) for inter-module 
communications.
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extension on NoteHub is sent to the NoteCard 
on any sync.

One powerful feature of NoteHub is event 
routing, which allows one to forward data 
from NoteHub to a public/private cloud, 
including AWS, Azure, Google Cloud, a 
messaging platform like MQTT, or a custom 
HTTP/HTTPS endpoint. Note that MQTT is 
supported. Let’s take a step back and look at 
how our solar project is now configured to 
use the NoteCard.

NOTECARRIER
I’m using a NoteCarrier-AF for this project. 

The present offering, the NoteCarrier-F, is just 
a slight variation of this, it uses an external 
antenna, for instance. The Huzzah32 plugs 
into the Feather socket. We can continue to 
use the RS-485 converter described the initial 
project column [1]. This only needs a 6-wire 
connection to the NoteCarrier-F. Note that the 
schematic (Figure 2) consists of adding the 
RS-485 chip to the NoteCarrier, so that we 
can make the Modbus connection to the Eagle 
Nest’s solar system.

Since I am using the Huzzah Serial1port 
for Modbus and the serial USB port is being 
used as the debug port, I will be using the 
I2C interface to the NoteCarrier/Card. Either 
serial or I2C can be used to communicate 
with the NoteCarrier-F. All connections 
between the Note Card and my Huzzah 32 
are made through the NoteCarrier. I just 
added the six connections to my RS-485 
circuit module [1].

You will need to install the note-arduino 
library available on Blues GitHub page [5]. 
This library gives the user about a dozen 
functions. For this project we’ll only use 
six. Like many libraries, one of the first 
functions you place in the setup() function 
is Notecard.begin(0x17, 0x20, Wire). 
The parameters for this function define 
whether the NoteCard interface will be via a 
serial port or I2C; here the setup is for the 
I2C interface. Once I’ve started the primary 
serial port with Serial.begin(115200), 
I can command the Notecard to use this 
port for debug messages with Notecard.
setDebugOutPutStream(Serial). 

All communication between our micro 
and the NoteCard will be JSON objects. We’ve 
already used JSON objects in our Arduino 
code to identify a register source and its 
value. Objects are a group of one or more 
members (name:values pairs), surrounded by 
braces, {}. An object with multiple members 
are separated by a comma. 

The purpose of the NoteCard is to form 
a communication path between our micro 
and the NoteHub, which is the cloud-based 
receiver of our cellular data. We need to 
inform NoteHub who we are and how we will 
communicate with it. This is accomplished 
by creating a JSON object. A hubRequest 
command is used to configure and monitor 
the connection between the Notecard and 
Notehub.

J *req = Notecard.newRequest(”hub.
set”) ;

will initialize this object with a member 
identifying the command. 

Next, we can add some JSON members 
to the object. The second member 
identifies us and ties us to our specific 
NoteCard, JaddStringToObject(req, 
”product”, myproductID). The string 
variable, myproductID, will be discussed 
further in the NoteHub section to follow. 
Next we’ll configure how the communication 
channel will be used by defining the ”mode”, 
JaddStringToObject(req, ”mode”, 
”continuous”). There are basically two 
modes: ”periodic” (default) and ”continuous”. 
Periodic is used to keep NoteCard in a low 
power mode (µA) and connect with NoteHub 
periodically. The continuous mode (tens of 
mA) keeps a communication path open for 
immediate transfer of data. In either mode, 
the current draw is 250mA when the modem 
is active. I’ll be transferring data once per 
minute. 

We have a complete command (JSON 
object) built now, and it looks like this:

{
 ”req” : ”hub.set”,
  ”product” : myProductID,
  ”mode” : ”continuous”
}

We are now ready to send this JSON object 
to the NoteHub. The sendRequest function 
handles this. Initially, we are coming out of a 
power-up, and we don’t know if the NoteCard 
has finished all of its initialization (it has its 
own application to execute). If we ask it to 
send a request to NoteHub before it is ready, it 
could fail. We can either check for that or use 
the sendRequestWithRetry function. I’ll 
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let the NoteCard handle any error and use the 
function sendRequestWithRetry(req, 5). 
This will retry the send command every 5 
seconds.

Let’s take advantage of the NoteCard’s 
time service. Once it has completed a sync 
with NoteHub, it will have a reference epoch 
(number of seconds since January 1, 1970.) 
This requires a second JSON object, one 
that holds the response from the NoteCard. 
The command J *rsp = Notecard.
requestAndResponse(Notecard.
newRequest(”card.time”)) is used to 
initialize the rsp object to the response of the 
function. The NoteCard’s card.time function 
returns an object containing multiple members. 
We want the member ”time” : reference 
epoch, where reference epoch is a number 
(signed 32-bit integer). This number can be 
easily extracted from the object using the 
command myEpoch = JgetNumber(rsp, 
”Time”). After we have what we want, we 
can delete the rsp object from the NoteCard 
with Notecard.deleteResponse(rsp). I 
adjust myEpoch for my local time zone. I’m 
using the TimeLib.h to handle the time on 
the Arduino.

We’re now finished with all the necessary 
NoteCard initialization in the Arduino’s 
setup() function, so it’s on to the loop() 
function where we have previously gathered 
data via the Modbus connection to the solar 
system. We don’t have a lot of things to do in 
our loop() function. We do need to decide how 
often to request data from any of our devices in 
the solar system. The variable sampleDelay 
constant determines this timing, and our 

function requestRegisters() asks for 
20 registers in the solar controller, starting 
with register address 0x100. Besides 
requesting data in a timely fashion, our loop 
also checks for any activity on the Modbus 
(excluding any requests we make). If we 
have activity, hopefully a response to our 
request, we call the mbProcess() function 
to dissect the response. If this response was 
due to our request, the data is placed into 
the appropriate group of defined variables. 
Our previous programs have initialized local 
holding registers for every piece of data we 
might be interested in from any of the devices 
connected on the Modbus. For this program 
we are interested in just 20 of these.

With data collected, we are now ready 
to have this data transferred via cellular 
communication to the notehub.io cloud. We’ll 
use the now familiar newRequest function 
to handle this. The last request was for the 
hub.set command, now our JSON object 
will use the note.add command, J *req 
= Notecard.newRequest(”note.add”). 
We’ll add a sync member to the object, 
JaddBoolToObject(req, ”sync”, true) 
to force the NoteHub to handle this immediately. 
Then all our data is added as additional 
members, which will all be sent in one fell 
swoop (Listing 1). 

When we’ve added all the data we want 
to include, we issue a command to send the 
data, Notecard.sendRequest(req). You 
may have noticed that the member data was 
added to ”body” and not to ”req” as in our 
hub.set command. This alters the JSON 
object by adding a member ”body” that is 

JAddNumberToObject(body, “batterySOC”, batterySOC);
JAddNumberToObject(body, “batteryVoltage”, batteryVoltage);
JAddNumberToObject(body, “batteryCurrent”, batteryCurrent);
JAddNumberToObject(body, “controllerTemperature”, controllerTemperature);
JAddNumberToObject(body, “batteryTemperature”, batteryTemperature); 
JAddNumberToObject(body, “loadVoltage”, loadVoltage);
JAddNumberToObject(body, “loadCurrent”, loadCurrent); 
JAddNumberToObject(body, “loadPower”, loadPower);
JAddNumberToObject(body, “solarVoltage”, solarVoltage);
JAddNumberToObject(body, “solarCurrent”, solarCurrent); 
JAddNumberToObject(body, “solarPower”, solarPower); 
JAddNumberToObject(body, “batteryCumulativeChargeHours”, batteryCumulativeChargeHours); 
JAddNumberToObject(body, “batteryCumulativeDischargeHours”, 
batteryCumulativeDischargeHours); 
JAddNumberToObject(body, “solarCumulativePowerGenerated”, solarCumulativePowerGenerated); 
JAddNumberToObject(body, “solarCumulativePowerConsumed”, solarCumulativePowerConsumed);

LISTING 1
This is where each variable is added to the JSON object body. Each member will contain the variable name and its value.
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an array of the data. Because I enabled the 
debug port, we can see this sent to the USB 
serial port (Serial). See Listing 2. 

Note the JSON object contains four 
members: ”req,” ”sync,” ”body,” and ”crc.” 
The member ”body” has an array of members 
associated with it. The ”crc” member ensures 
that the data is transferred without error.

So far in this project, I’ve collected data 
from the solar system installed in Troop 
96’s equipment shed, which is off the grid. 
Because we have no way of monitoring the 
system, except for a Bluetooth app on my cell 
phone—which only works while I’m near the 
shed—a cellular connection was added. My 
MCU, which collects the data, is interfaced 
with a Blues Inc. NoteCard, which is now 
sending the collected data to NoteHub.io, 
Blues’ cloud service [4]. Let’s now see what 
NoteHub.io does with this data.

NOTEHUB
When you purchase a NoteCard, you get 

hardware that you can immediately power up, 
and follow an online tutorial on how to set 
up your NoteCard and connect to it from the 
web browser. Open the Blues.io webpage for 
NoteCard quickstart and NoteCarrier-F [6]. 
You will get an error message if your browser 
is not supported. A supported web browser ( 

FIGURE 3
The NoteHub Quick Start Tutorial will guide you to quickly get connected using your NoteCard/NoteCarrier without the need to write any code. This is a great way to 
get some hands on experience with the hardware before you begin writing your application.

{
 “req”:”note.add”,
 “sync”:true,
 “body”: 
 {
  “batterySOC”:0,
  “batteryVoltage”:0,
  “batteryCurrent”:0,
  “controllerTemperature”:0,
  “batteryTemperature”:0,
  “loadVoltage”:0,
  “loadCurrent”:0,
  “loadPower”:0,
  “solarVoltage”:0,
  “solarCurrent”:0,
  “solarPower”:0,
  “batteryCumulativeChargeHours”:0,
  “batteryCumulativeDischargeHours”:0,
  “solarCumulativePowerGenerated”:0,
  “solarCumulativePowerConsumed”:0
 },
 “crc”:”0002:98F82C2C”
}

LISTING 2
You can see a copy of the complete JSON object that's sent via the debug serial output on the 
HUZZAH32 micro. Once connected to the solar system's modbus, these values will be pulled from 
the solar controller.
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Chrome, Opera, or Edge) will connect directly 
to the NoteCarrier USB port and manipulate 
the NoteCard directly with it, as if you had 
a MCU attached to it. This initial connection 
with the USB cable is used for the tutorial to 
make it easy to experiment with the Noteard/
NoteCarrier kit right out of the box.

When you connect the NoteCarrier via USB 
to your PC, it should be recognized as a new 
serial port connection. You can now connect 
to it, and you should see some messages just 
under the green bar in the upper right of the 
screen (Figure 3). The NoteCard is directed 
to make contact with NoteHub. Once its sign-
in is complete, you should see a sign-on 
message:

Welcome to the Notecard In-Browser 
Terminal.
Start making requests below.
(For advanced info, use the ‘help’ command.)
************************************
~ Connected to serial
~ DeviceUID dev:864475044208469 (NOTE-
NBGL500) running firmware 5.1.1.16026

 Your NoteCard’s UID is shown along with 
the revision of the firmware running on the 
card. Now you can enter commands. The 
quickstart suggests entering the following 
command:

{”req”:”card.version”}

You can copy this into the input terminal 
at the lower right. Click on ”>” to send the 
request. You’ll note that the response is in 
JSON format, and the info is the same as the 
sign-on message.

New users are required to set up an 
account on NoteHub. Under the heading ”Set 
up Notehub,” see ”Create a Notehub Project” 
and click on ”Notehub Project Dashboard.” 
The quickstart guides you through this by 
opening a new browser window (NoteHub.
io), where you can enter your name, email 
address, and a password. When you have 
completed this, you are ready to create a 
project. Click on ”+Create Project’” and add 
a project name such as ”quickstart” to the 
New Project card. Note that you are given an 
account and a UID prefix. The product UID 
becomes the product UID prefix plus the 
project name. Remember that earlier, we 
initialized a variable product_UID in our 
Arduino sketch? This project’s ”productUID” 
is what you will use to define that product_
UID, so your application will be associated 
with the NoteCarrier/NoteCard, theNoteCard/
NoteHub communication channel, and this 
project on NoteHub. When you’re happy with 
the information, click on ”+Create Project” 

and your browser will go to your project page. 
Make note of the ”ProductUID” here, and 
with it you can continue with the quickstart 
by entering the following command into the 
input terminal:

{”req”:”hub.set”, ”product”:”com.
your-company.your-name:your_
product”} 

Then substitute your productUID 
for ”com.your-company.your-name:your_
product” in the right-hand member of the 
JSON pair. When the command is sent you 
will see the command and response in the 
output terminal. A no-error response is sent 
as ”{}”. You can switch back to the Blues.
io tab and go on with quickstart entering 
commands including:

{”req”:”note.add”,”body”: 
{”temp”:35.5,”humid”:56.23}} 

At this point, we’ve requested the 
NoteCard to send some data to our project in 
NoteHub. Go back to the NoteHub.io tab and 
click on ”events.” You should now see a list 
of events or communiques you requested via 
the NoteCard. Select an event and click ”view” 
to see the event data. The last command sent 
was typical data. This is saved as an event in 
the .qo file. If you select that event and view 
it, you will see this event’s data under the 
”Body” tab (Figure 4). 

You should investigate all the different 
screens available on your project’s page, 
and become familiar with how things are 
presented, because we will be coming back to 
this shortly. You should also experiment with 
sending other commands using the terminal 
in the Blue.io window. 

FIGURE 4
The tutorial shows you how to send data from your NoteCard/NoteCarrier to NoteHub and see the 
actual data arrive as an event.
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FIGURE 5
My application data wants to eventually end up being sent to my Raspberry Pi, running an MQTT server. NoteHub can be used to route events to an external data sink. 
My choice is MQTT, and NoteHub makes it happen by answering a few questions. 

FIGURE 6
Events are routed by NoteHub to my Raspberry Pi. I'm using Node-RED to take each MQTT packet sent and split the JSON object into individual members.



circuitcellar.com 63
CO

LU
M

NS

THE REAL THING
We have enough information to proceed 

with our project. My Huzzah 32 MCU is 
chomping at the bit to be programmed 
with this latest application and be placed 
on the NoteCarrier’s ”Feather Headers.” We 
discussed the additions to an application 
to support NoteCard/NoteHub. These have 
been added to our project from last month 
[2]. The use of Wi-Fi last month, as part 
of the ESP32 MCU, is now replaced by the 
NoteCard’s cell service communication. Using 
the Arduino IDE, this new application can 
now be programmed into the micro. Upon 
power up, the Huzzah’s application makes 
itself known to the NoteCard. This NoteCard 
(NBNA-500) uses a Quectel BG95-M1 modem, 
which covers the LTE_M Data Networks in 
United States, Canada, and Mexico. (See other 
models for global coverage.)

Our product on Notehub.io is receiving 
our data periodically, based on the constant 
reportDelay, once an hour. However 
samples are taken periodically, based on 
the constant sampleDelay, here every 10 
seconds. Each sample is saved along with a 
running total, so that when reported once an 
hour, the average sample is reported. The 
equation for the first register of interest, 
batterySOC, is:

batterySOC = batterySOCTotal/
sampleCount;

This is handled in the averageTotals() 
function prior to adding the data members 
to the ”body” object. A final command, 
notecard.sendRequest(req), will 
request our NoteCard to send our data to 
NoteHub.

Assuming this has happened and it has 
arrived as an event, we need to get the events 
routed to the Raspberry PI installed on my 
home network. Click on the route tab and then 
the ”+Create Route” button. Here is a list of 
the routing destinations you can choose from. 
Each has a tutorial to help you if necessary. 

• HTTP/HTTPS endpoints
• AWS
• Azure
• Google Cloud function
• MQTT
• PROXY
• ThingWorx 
• RadResponder
• snowflake
• twillo
• Edge Impulse
• slack
• amazon S3
• Datacake

In this case, I am going to choose MQTT. 
This leads to the MQTT configuration page in 
Figure 5. Here you can give your route a name. 
Only two other items are required, Broker URL, 
and Topic. The Raspberry Pi is on my local 
WAN, so I can go to my Modem/Router and find 
my actual IP address. While this is not a static 
IP, I found it is not likely to change unless you 
change service provider. You can always use 
a dynamic DNS (Domain Name Server), if you 
want to have a static name served to your 
dynamic IP, like No-IP.com 

Topic defines the topic for each messages 
routed (forwarded to my Pi); the payload 
will be your event data. I use the [product]/
[device] which substitutes my ProductUID ”/” 
DeviceUID as the topic. These can be found 
on the Device tab by double clicking on the 
appropriate device. You’ll need this for the 
MQTT IN node in your Node-REDflow [7]. Last 
month I used the Huzzah’s Wi-Fi and showed 
how, if your system was in range of Wi-Fi 
service, you could send the data directly to 
the MQTT server. There is little to change to 
that Node-RED flow. The difference is in how 
the data comes in. 

In the Wi-FI project [2], each JSON object 
contained one member (name/value pair) per 
packet. NoteHub will route the whole event, 
consisting of multiple members (including 
more than just the data), in one packet. You 
can see most of this in Node-RED in the debug 
panel on the right of Figure 6. We just need to 
change the Topic in the MQTT In node to the 
one used in the NoteHub MQTT setup. Because 

FIGURE 7
Each of the 20 variables pulled from the Solar Controller via the Modbus and recorded by the Huzzah 
32 are transferred to the NoteCard and sent to NoteHub. There you can see an event's body contains 
20 members (name/value pairs).



CIRCUIT CELLAR • NOVEMBER 2023 #40064
CO

LU
M

NS

each event sent to NoteHub from NoteCard 
contains all our data in a single packet, the 
event is routed to our MQTT server all at 
once. If you viewed an event on NoteHub 
(events, click on an event, then view), you 
can choose ”body”, to see the data members 
(Figure 7), or ”JSON” to see the complete 
event information. Note that the JSON object 
contains multiple members (name/value 
pairs), one of which is ”body.” This member 
has an object as its value. The ”body” object 
contains multiple members, our data 

All of this is sent to the MQTT server, 
so each event will need to be disassembled 
into separate messages. The first split node 
divides the single message into multiple 
messages. If enabled, Debug 20 will show 
the separated messages in the debug panel 
on the right. They are ”event,” ”session,” 

”best_id,” ”device,” and so on. Note that the 
message ”body” contains all of our data. 
The second split node divides the ”body” 
message into separate messages, as can be 
seen using debug 12. Now we have a whole 
lot of individual messages, just like the ones 
sent using Wi-Fi in last month’s project. The 
”switch’” node routes only those that are our 
data messages to separate outputs, where 
they can be massaged and displayed on the 
Node-RED dashboard (Figure 8).

COST OF SERVICE
Today you can get a starter kit for North 

America for $99 or the EMEA (Europe, Middle 
Asia, and Africa) starter kit for $109 from 
Blues.io. This includes NoteCard, NoteCarrier, 
Swan (Feather-compatible micro), and 10 
years of cell service! The cell service includes 
500MB of free cellular data and 5,000 free 
Consumption Credits. Yup! For about a 
hundred bucks you can get started with a 
cellular connection that will give you up to 10 
years of service. Renewals and extra data are 
equally valued.

So how can Blues make any money on this 
stuff? Naturally, offering a development kit 
and service at such a low cost removes any 
initial hesitation to try out their hardware. 
Their real income will come from reoccurring 
revenue. This is measured by cellular data 
limit and the consumption credits (CC). Each 
of my events is about 1.5KB. If we divide the 

 
Additional materials from the author are available at: 
www.circuitcellar.com/article-materials 
References [1] to [7] as marked in the article can be found there.

RESOURCES

Adafruit | adafruit.com

Arduino | www.arduino.cc

Blues, Inc. | blues.io

Node-RED | nodered.org

Renergy, Inc. | renergy.com

FIGURE 8
Once Node-RED has received the MQTT JSON packet and split it into individual members, each members is sent to the appropriate chart or textbox for display on 
the Node-RED Dashboard.

http://www.circuitcellar.com/article-materials
http://www.arduino.cc
https://www.adafruit.com
https://blues.io
https://nodered.org
https://renergy.com
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cellular data cap by my event packet size 
we get 500,000,000B/15,00B = >300,000 
messages. If I sent this every minute, that 
would be ~200 days. Cellular data and CC are 
renewed each month, so I should never run 
out. You can think of consumption credits as 
NoteHub requests, of which an event route 
costs 1 credit, that would be 5,000 routes. 
Again, if we send an event every minute, that 
would be 60 minutes * 24 hours * 31 days = 
44,640 routes per month. That is a bit over 
our 5,000 CC budget. 40,000 extra CC’s cost 
about $30. If you limited the routes to every 
10 seconds, you would stay under budget. 
You’ll notice I’m only updating things once an 
hour so that’s only 24 routes/day * 31 days 
= 744 routes/month. It’s easy to see that in 
some applications you may need to purchase 
additional credits. 

UNCOVERED
There are so many things that I have not 

covered here. I think if you are at all intrigued 
by this, you should visit the Blues website 
and look a little deeper. I’m not sending any 
data to the NoteCard from my Pi. This cellular 
solution is closed loop, and can be used for 
both monitoring and control. So I could be 
using the cellular connection to say, turn ON/

OFF the power to the lighting units, but at this 
point there is nothing I want to control at the 
shed. You’ll be fascinated with some of the 
applications listed on the Solutions tab of the 
Blues website. 

If you are contemplating any kind of 
project that won’t have a permanent home 
on some Wi-Fi network, you should consider 
using cellular communication. You don’t have 
to fool around with connection requirements 
of SSID and security key each time you move 
to a new location. You may have noticed that 
one of the object members returned in the 
MQTT packet is the longitude and latitude 
of the cell tower picking up our cellular 
transmission. 

Once you have learned the fundamentals 
by following the tutorials, you will find it easy 
to tack this cellular system onto any project. 
I’m excited to get to use the new solar lighting 
system in our Troop’s shed. We’re starting up 
regular meetings again after the summer 
break. Our first meeting is this Monday night, 
and with the sun beginning to set earlier each 
night, having adequate lighting will surprise 
everyone. Everything is in place just in time. 
I’ll be adding weekly meetings and monthly 
camp outs to my fall schedule. Yep, there is 
too much to do and so little time. 

2nd Generation DC-DC
Down Converter
The 700DNG40-24-8 is a compact 
and lightweight 4kW liquid-cooled 
DC-DC converter known for its 
exceptional efficiency and reliability. 
It is specifically designed to support 
the DC voltage needs of hybrid and 
electric vehicles, making it ideal for 
powering various low-voltage 
accessories in these vehicles.

belfuse.com/power-solutions

https://belfuse.com/power-solutions
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ARTERY Introduces Its First Automotive-Grade MCU to Power Next-Generation Vehicles
ARTERY Technology launched its first automotive-grade 

microcontroller AT32A403A. Certified according to automotive 
standard AEC-Q100 Grade 2, and passed qualification tests 
including accelerated environmental stress test, accelerated 
lifetime simulation test, package assembly integrity test and 
electrical verification test.

Automotive-grade chips have the top priority of ensuring 
driving safety must pass a whole set of qualification tests for 
automotive applications according to the industry standard 
specification developed by Automotive Electronics Council (AEC).

AT34A403A—AT32A403A series is based on ARM 32-bit 
Cortex-M4 core that embeds up to 1MB Flash memory and 224KB 
SRAM, operating at a frequency of up to 200MHz. Powered by 2.6-
3.6V voltage and can operate in a wide operating temperature 
range from -40°C to 105°C, meets the high computing power, 
high stability, and high reliability requirements of automotive 
electronics.

AT32A403A integrates rich peripherals to enhance the 
connectivity of diverse communication interfaces. It features 
8x UARTs, 4x SPIs, 3x I2Cs, 2x I2Ss, 2x SDIOs, XMC, 2x CANs, 
SPIM, USB 2.0 FS interface supporting Xtal-less mode, 8x 16-
bit general-purpose timers, 2x 32-bit general-purpose timers, 
2x 16-bit motor control PWM advanced timers with dead-time 
generator and emergency brake, 2x 16-bit basic timers to drive 
DACs, 3x 12-bit 2 Msps A/D converters with up to 16 channels. 
Almost all GPIO ports are 5V tolerant. The AT32A403A series 
is especially suitable for IoT applications, leading to higher 
reliability and lower cost in terminal products.

Intelligent Application of Automotive MCUs: Along with 
the development of smart cars, on-board displays have been 
digitalized to realize human-vehicle interaction with gesture 
controls and even voice controls, instead of traditional mechanical 
buttons. With powerful on-chip resources, higher integration, 

cost-effectiveness, and safety functions adhering to automotive-
grade MCU standards, the AT32A403A series is considered the 
preferred choice for automotive applications such as advanced 
driver assistance systems (ADAS), automotive body control, 
anti-theft security devices, digital dashboard, automotive motor 
power supplies, automotive lighting, and automotive battery 
management system (BMS). It can even be applied to the in-
vehicle infotainment (IVI), Shy Tech and AR HUD to enrich audio-
visual experience and intelligent human-machine interaction.

Artery Technology is committed to creating automotive grade 
MCUs that are in line with the development trend of intelligence 
and digitalization and meet high performance and high safety 
standards. AT32A403A currently supplies a total of 12 models in 
4 different packages and 3 kinds of Flash memory architecture 
to create highly reliable automotive MCU solutions and accelerate 
the popularization of intelligent new energy vehicles. ARTERY will 
also continue to expand the automotive microcontroller market, 
and provide customers with better services and richer products.

ARTERY Technology | arterytek.com

Saelig Debuts Economical 12-bit Rigol DHO 800/900 Oscilloscope Series
Rigol’s newest high-performance 12-bit economical digital 

oscilloscopes are portable and offer high-resolution, a capture 
rate up to 1,000,000wfms/s, up to 50Mpts memory depth, 
and an ultra-low noise floor that allows the detection of even 
small signal details.

The Rigol DHO 800/900 Oscilloscope Series supports 16 
digital channel capture, allowing analysis on both analog and 
digital signals simultaneously to meet complex embedded 
design and test tasks. Affordably priced, these scopes provide 
auto serial and parallel bus analysis, Bode plot analysis, and 

many other functions needed for today’s test demands in 
R&D, education, and scientific research.

DHO800 Series Highlights
• Ultra-low noise floor, pure signal depiction, captures small signals
• Up to 12-bit resolution for all the models 
• Analog bandwidth of 70MHz & 100MHz, 2 & 4 analog channels
• Max. real-time sample rate 1.25GSa/s
• Max. memory depth 25Mpts
• Vertical sensitivity range: 500µV/div to 10V/div
• Max. capture rate of 1,000,000wfms/s (in UltraAcquire mode)
• Digital phosphor display with real-time 256-level intensity grading
• Waveform search and navigation function 
• 7″ (1024×600) capacitive multi-touch screen
• New user-friendly Flex Knob control
• USB Device & Host, LAN, and HDMI interfaces (std.) allows remote 

control
• Additional DHO 900 Series Highlights
• 16 digital channels (std. but logic probe purchase is required)
• Max. real-time sample rate of 1.25GSa/s
• Max. memory depth 50Mpts
• Vertical sensitivity range: 200µV/div to 10V/div

Saelig | saelig.com

mailto:product-editor@circuitcellar.com
https://saelig.com
https://arterytek.com
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Intel Reveals New 288-Core Sierra Forest CPU, Specifically Designed for  
High-Density Servers

Intel has unveiled a formidable 288-core CPU, featuring 
a dual-chiplet configuration with 144 cores on each die, 
resulting in an impressive 288 cores and 288 threads.

The 288-core CPU, as part of the Sierra Forest lineup, 
promises to deliver unparalleled processing capabilities 
for data-intensive tasks, while the compatibility with the 
Birch Stream platform opens the door for advanced server 
configurations and scalability, setting the stage for more 
efficient and powerful computing solutions. This move reflects 
Intel’s dedication to innovation and 
its ongoing efforts to address the 
evolving needs of diverse sectors 
within the technology landscape, 
promising exciting developments on 
the horizon for both consumers and 
enterprise customers.

Intel has unveiled a formidable 
288-core CPU, featuring a dual-chiplet 
configuration with 144 cores on 
each die, resulting in an impressive 
288 cores and 288 threads. This 
announcement positions Intel to 
compete directly with AMD’s EPYC 

Bergamo CPUs, known for offering up to 128 Zen 4C cores, 
and Ampere’s 192-core AmpereOne processors, both of 
which made their debut earlier this year. Notably, there is 
speculation within the industry that Intel may even explore 
the possibility of launching a tri-chiplet SKU with a staggering 
432 cores, although the feasibility of such a technological 
advancement remains uncertain and will undoubtedly draw 
significant attention.

Intel’s latest offering in the form of the 288-core CPU 
underscores the fierce competition 
in the high-performance computing 
market, with companies constantly 
striving to push the boundaries of 
core count and processing power. As 
the technology landscape continues 
to evolve, this development signifies 
Intel’s commitment to staying at the 
forefront of innovation, promising 
exciting prospects for users in need of 
unparalleled processing capabilities 
for a wide range of demanding 
applications.

Intel | intel.com

Sheba Microsystems Launches Revolutionary MEMS Autofocus 
Actuator for Active Athermalization in Embedded Vision Cameras 

Breakthrough µPistons technology uniquely solves decades-
long embedded vision camera industry’s problem of lens 
thermal expansion. This novel product unlocks unparalleled 
resolution and consistent high-quality imaging performance 
for automotive, action, drone, mobile robotics, security and 
surveillance, and machine vision cameras.

The first-of-its-kind solution tackles the long-standing 
industry problem of embedded vision cameras’ inability to 
maintain image quality and focus stability during temperature 
fluctuations as optics undergo thermal expansion.

While smartphones use autofocus actuators and 
electromagnetic actuators including voice coil motors 
(VCMs), these actuators are unreliable for achieving active 
athermalization in embedded vision cameras due to extreme 
environmental conditions. Embedded vision camera optics are 
also 30 times larger than smartphone optics. Other autofocus 
systems in-market such as tunable lenses lack thermal stability 
and compromise optical quality.

“MEMS actuators are fast, precise, and small in size, and 
are actually uniquely suited to solve thermal expansion issues, 
because they are thermally stable and maintain consistent 
performance regardless of temperature changes,” said CEO 
and co-founder Dr. Faez Ba-Tis, PhD. “Because of these known 
advantages, there have been previous industry attempts at 
incorporating MEMS actuators into cameras, but because 
they failed drop tests they were quickly abandoned. Sheba’s 
new design solves for all of these previous blockers, which 
opens up limitless possibilities for embedded vision camera 
innovation.”

Sheba’s proprietary technology 
compensates for thermal expansion 
by uniquely moving the lightweight 
sensor, instead of moving the 
lenses. The silicon-based MEMS 
actuator platform actuates the 
image sensor along the optical axis 
to compensate for thermal expansion in the optics. The weight 
of the image sensor represents only 2-3% of the optical lens 
weight, which makes it easier to handle, enabling ultra-fast 
and precise autofocus performance even when temperatures 
fluctuate.

Sheba’s novel piston-tube electrode configuration takes 
advantage of a larger capacitive area, allowing for substantial 
stroke and increased force. Sheba’s µPistons design makes the 
MEMS actuators uniquely resilient against severe shocks, since 
the electrodes are well-supported and interconnected.

Sheba’s new MEMS actuator has successfully passed drop 
tests as well as other reliability tests, including thermal shock, 
thermal cycling, vibration, mechanical shock, drop, tumble, and 
microdrop tests. It is also highly rugged, which helps maintain 
image focus during high shocks in action cameras or machine 
vision environments.

Sheba’s MEMS actuator offers lens design flexibility and is 
suitable for near and far-field imaging. It is easily integrated 
into existing systems and scaled up on mass production tools 
for automotive, action, drone, mobile robotics, security and 
surveillance, and machine vision cameras.

Sheba Microsystems | shebamicrosystems.ca

mailto:product-editor@circuitcellar.com
https://shebamicrosystems.ca
https://intel.com


CIRCUIT CELLAR • NOVEMBER 2023 #40068
PR

O
D

U
CT

 N
EW

S

PRODUCT NEWS by Kirsten Campbell

NEW PRODUCT SUBMISSIONS— E-mail: product-editor@circuitcellar.com

Dusun Introduces DSGW-290 IoT Edge Computing Gateway Specially Designed for 
IoT Hardware Developers

The DSGW-290 Dusun Pi4 is a multifunctional IoT gateway 
hub that supports multiple protocols: BLE/ZigBee/Z-Wave/Sub-G 
to Wi-Fi/LTE/Ethernet.

Dusun has introduced a highly versatile smart home mini PC—
DSGW-290 smart home hub, featuring exceptional multimedia 
processing capabilities suitable for both home and office media 
centers and entertainment purposes. This mini PC also offers a 
comprehensive selection of wireless protocol options, making it 
an ideal candidate for use as a smart home hub. 

It features a high-performance processor designed for 
robust and reliable performance, the RK3568, equipped with 
an independent NPU boasting an impressive 1T computing 
capability.

The 64-bit quad-core Cortex-A55 processor, with a maximum 
clock speed of 2.0GHz, ensures consistent and efficient data 
processing for the DSGW-290. Includes 
4GB of DDR4 RAM and 64GB of eMMC 
storage, guaranteeing both speed and 
stability for your devices. Option to insert 
a TF card (up to 1TB) and an M.2 SSD (up 
to 512GB) via the PCIe interface.

The DSGW-290 mini PC comes 
fully equipped with a diverse range of 
integrated wireless modules, featuring 
Zigbee 3.0 (with optional Tuya Zigbee 
support), Bluetooth 5.2 (BLE), Z-Wave, 
Sub-GHz, Wi-Fi (2.4G/5G), and 4G LTE 
Cat4 connectivity.

The DSGW-290 incorporates a GMAC Ethernet controller that 
extends the capabilities with two RJ45 Gigabit Ethernet ports, 
delivering a significant advantage in data transfer speed and 
meeting the demands of high-speed networks. Simultaneously, 
the presence of dual Gigabit Ethernet network ports enables 
users to seamlessly transmit and access data within both 
internal and external networks. Additionally, the DSGW-290 
features a USB3.0 port, a USB2.0 port, and a Type-C port, 
further enhancing its data transfer capabilities and enabling 
faster data transfer speeds.

The DSGW-290 distinguishes itself as nearly pure computer 
hardware, offering developers the flexibility to customize 
firmware logic from the ground up. Users can select from a 
range of operating systems, including Debian 11 and Android, 
as well as leverage programming languages such as C, C++, 

Python, and Java. The DSGW-290 runs on 
a Linux-based operating system.

The DSGW-290 represents a significant 
leap forward in the realm of smart 
home technology. Delivering unmatched 
multimedia processing capabilities, a 
comprehensive suite of onboard wireless 
modules for seamless connectivity, and 
exceptional programmability allowing 
for high customization, it stands as a 
true pioneer in the world of smart home 
mini PCs and hubs. 

Dusun | dusuniot.com

AMD Introduces EPYC 8004-Series ‘Siena’ CPUs
AMD has unveiled EPYC 8004-series processors for edge 

servers. Previously disclosed under the codename Siena, the 
EPYC 8004 series is AMD’s low-cost sub-set of EPYC CPUs, 
aimed at the telco, edge, and other price and efficiency-
sensitive marketing segments. Based on the same Zen4c cores 
as Bergamo, Siena is essentially Bergamo-light, using the 
same hardware to offer server processors with between 8 and 
64 CPU cores. The new CPUs come in an all-new SP6 form-
factor, pack up to 64 Zen 4c cores, and feature a six-channel 
DDR5 memory subsystem. AMD’s EPYC ‘Siena’ processors are 
designed for edge and communications servers that rely on 
one processor and require advanced I/O and power efficiency 
more than raw performance.

“The new EPYC 8004 Series processors extend AMD 
leadership in single socket platforms by offering excellent 
CPU energy efficiency in a package tuned to meet the needs 
of space and power-constrained infrastructure,” said Dan 
McNamara, senior vice president and general manager, Server 
Business, AMD.

Besides the reduced excitement that comes with the launch 
of lower-end hardware, there is, strictly speaking, no new 
silicon involved in this launch. Siena is comprised of the same 
5nm Zen 4c core complex die (CCD) chiplets as Bergamo, which 
are paired with AMD’s one and only 6nm EPYC I/O Die (IOD). As 
a result, the EPYC 8004 family isn’t so much new hardware as 
it is a new configuration of existing hardware—about half of a 

Bergamo, give or take.
And that half Bergamo 

analogy isn’t just about 
CPU cores; it applies to 
the rest of the platform 
as well. Underscoring 
the entry-level nature 
of the Siena platform, 
Siena ships with fewer 
DDR5 memory channels 
and fewer I/O lanes 
than its faster, fancier 
counterpart. Siena only 
offers 6 channels of DDR5 memory, down from 12 channels for 
other EPYC parts, and 96 lanes of PCIe Gen 5 instead of 128 
lanes. As a result, while Siena is still a true Zen 4 part through 
and through (right on down to AVX-512 support), it’s overall a 
noticeably lighter-weight platform than the other EPYC family 
members.

“AMD has delivered multiple generations of data center 
processors that provide outstanding efficiency, performance, 
and innovative features,” added McNamara. “Now with our 4th 
Gen EPYC CPU portfolio complete, that leadership continues 
across a broad set of workloads—from enterprise and cloud, to 
intelligent edge, technical computing and more.”

AMD | amd.com

mailto:product-editor@circuitcellar.com
https://dusuniot.com
https://amd.com
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TEST YOUR EQ 
Contributed by David Tweed 

Problem 1—The classic two-transistor a stable 
multivibrator is shown below. Typically, R2 and R3 have at 
least 10 times the value of R1 and R4. This circuit oscillates, 
with Q1 and Q2 turning on alternately. From the point in 
time in a cycle where Q1 first switches on, describe what 
happens until Q2 switches on.

Problem 2—What determines the time of one half-cycle 
of the oscillation? Does this depend on VCC?

Problem 3—Recently, a different circuit appeared on the 
web, shown below. Again, R2 and R3 are significantly larger 
than R1 and R4. The initial reaction of one observer was 
that this circuit can’t work, because there’s no DC bias path 
for either transistor. Is this assessment correct?

Problem 4—What role do R2 and R3 play in this circuit?

Analog Soluuons for Baaery 
Management Systems

microchip.com/BMS

https://microchip.com/bms
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Advancements in Drone 
RF Surveillance

Brandon Malatest
COO and Co-Founder of 
Per Vices

The Future of RF Surveillance

Harnessing High Bandwidth and Wide Tuning 
Range Software-Defined Radios (SDRs)

S oftware-defined radios (SDRs) 
represent a paradigm shift in 
wireless communication systems. 
Unlike traditional radios, which rely 

heavily on dedicated hardware components 
to perform specific functions, SDRs leverage 
software to control and configure radio 
functions. This flexibility allows SDRs to 
adapt to various communication standards, 
frequency bands, and signal processing 
techniques, making them a versatile solution 
for modern wireless applications.

Drones have proven to be invaluable 
tools for surveillance across a multitude of 
industries. In the realm of RF surveillance, 
drones equipped with specialized sensors 
and SDRs can intercept and analyze wireless 
signals emitted from various sources. These 
sources can include communication devices, 
Internet of Things (IoT) devices, and even 
illicit transmitters. This capability makes 
drones equipped with SDRs vital assets for 
spectrum monitoring, threat detection, and 
intelligence gathering with a specific focus 
on the incorporation of high-bandwidth and 
wide tuning range SDRs.

The integration of high-bandwidth 
SDRs introduces an array of advantages, 
empowering drones to capture and analyze 
a broader range of frequencies than ever 
before. These specific advantages include 
improved signal detection, real-time analysis, 
and spectrum mapping.

Improved Signal Detection: High-
bandwidth SDRs empower drones to capture 
a wider range of frequencies simultaneously. 
In the past, narrowband radios limited the 
ability to monitor only specific frequencies 
at a time. With high-bandwidth SDRs, 
drones can now conduct comprehensive 
spectrum analysis, identifying potential 
threats and anomalous activities across 
multiple frequency bands (Figure 1). This is 
particularly advantageous in scenarios where 

various wireless technologies coexist, such as 
Wi-Fi, Bluetooth, cellular, and IoT.

Real-Time Analysis: Traditional RF 
surveillance systems often required post-
processing of captured data for analysis. 
High-bandwidth SDRs enable drones to 
process and analyze complex RF signals in 
real time using on-board field programmable 
gate arrays (FPGAs). This immediate analysis 
provides operators with actionable insights, 
allowing them to swiftly respond to emerging 
threats or anomalies. For example, a 
drone equipped with a high-performance, 
high-bandwidth SDR with on-board FPGA 
for DSP can identify unauthorized drone 
communication attempts in real time, 
helping security personnel intervene before 
any potential threat materializes.

Spectrum Mapping: Drones equipped with 
high-bandwidth SDRs can create detailed 
spectrum maps. These maps illustrate signal 
strength and frequency distribution across 
a geographical area. By identifying signal 
congestions and dead zones, network operators 
can optimize wireless deployments for better 
coverage and performance. Additionally, 
these maps aid in detecting unauthorized 
transmissions and interference sources. For 
instance, during a large event, a drone can 
monitor signal congestion and ensure that 
critical communications remain unaffected.

Similar to the benefits of high-bandwidth 
SDRs outlined above, it is equally important 

FIGURE 1
High-bandwidth SDRs allow drones to scan multiple bands of the frequency spectrum, shown here.
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FIGURE 2
High-bandwidth, wide tuning 
range SDRs like Per Vices Cyan 
can improve drone-based RF 
surveillance.
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to ensure the SDRs being utilized offer wide 
tuning ranges. These systems offer additional 
flexibility and interference mitigation along 
with the use for covert operations.

Frequency Flexibility: Wide tuning range 
SDRs provide drones with the ability to scan a 
broad spectrum of frequencies. This flexibility 
is crucial in scenarios where the frequency 
of interest might change frequently. Whether 
it’s monitoring licensed communication bands 
or searching for rogue signals, wide tuning 
range SDRs ensure that drones can adapt to 
dynamic RF environments. This adaptability 
is vital in situations like disaster response, 
where communication frequencies may shift 
due to damaged infrastructure.

Interference Mitigation: Drones equipped 
with wide tuning range SDRs can identify 
sources of interference and assess their impact 
on communication systems. By pinpointing 
interfering signals, operators can take proactive 
measures to mitigate the effects of interference 
and maintain the reliability of critical wireless 
networks. For example, in urban areas with high 
levels of electromagnetic interference, drones 
can help pinpoint sources of interference, 
enabling authorities to optimize signal 
distribution and minimize service disruptions.

Covert Operations: The wide tuning 
range of SDRs allows drones to intercept and 
analyze signals across a range of frequencies, 
including those that may be used for covert 
communications or illicit activities. This makes 
drones equipped with such SDRs essential 
tools for law enforcement and security 
agencies, enabling them to detect and counter 
unauthorized communication attempts. In 
scenarios where criminals use encrypted 

communication on various frequencies, drones 
with wide tuning range SDRs can help decode 
and analyze such communications, aiding law 
enforcement efforts.

While the benefits of using high-bandwidth 
and wide tuning range SDRs for drone 
RF surveillance are undeniable, there are 
challenges to address. Power consumption 
is a critical consideration, as processing 
high-bandwidth signals demands substantial 
energy. Efficient power management solutions, 
and standard rack mount solutions optimized 
for signal processing, are essential to extend 
drone flight times.

Moreover, the complexity of signal 
processing algorithms and data analysis must 
be managed efficiently to ensure real-time 
responsiveness. Advanced signal processing 
techniques, including machine learning 
and artificial intelligence, can aid in quickly 
identifying patterns in intercepted signals 
and distinguishing between legitimate and 
potentially malicious activities.

The integration of high bandwidth and 
wide tuning range SDRs in drone-based RF 
surveillance marks a significant leap forward 
in capabilities (Figure 2). These advancements 
empower drones to efficiently detect, analyze, 
and respond to diverse RF signals, making 
them indispensable tools for spectrum 
monitoring, threat detection, and intelligence 
gathering. As technology continues to evolve, 
the synergy between SDRs and drones is set 
to reshape the landscape of RF surveillance, 
unlocking new possibilities and enhancing our 
ability to monitor and secure the wireless 
world. Through effective collaboration, 
innovation, and responsible deployment, 
high-bandwidth and wide tuning range SDRs 
promise to revolutionize the field of drone RF 
surveillance, creating a safer and more 
connected future. By addressing challenges 
and leveraging the full potential of SDRs, the 
integration of drones and RF surveillance 
holds the promise of enhanced situational 
awareness, improved communication 
reliability, and a stronger foundation for 
public safety and security.  
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Per Vices | www.pervices.com

mailto:solutions@pervices.com
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S ometimes, digital or logic design tasks require more 
than one gate, but are not so complex that a CPLD 
or even an FPGA is deemed necessary. When small-
scale digital design is only an occasional challenge, 

encompassing only a minor part of the total circuitry, one 
may have concerns about the expenditures for a CPLD/FPGA 
integrated development environment (IDE), programming 
equipment, and so on. Thus, it may be expedient to resort 
to traditional logic design. This is not just a matter of 
tinkering. On the contrary, elementary logic circuitry is also 

used in large-volume fields of use like automotive systems. 
Consequently, semiconductor manufacturers offer a broad 
portfolio of appropriate devices (Figures 1 to 5) [1-15]. 

Packages are, so to speak, a science in itself. There 

Tiny or little logic components belong to the staple portfolio of 
semiconductor manufacturers. For some special purposes, they 
offer compelling advantages. Components that are barely visible 
on the printed circuit board connect, for example, ASICs to 
microcontrollers (MCUs), or allow a reduction in the pin count and 
hence the cost of the more flashy ICs. Therefore, designing gate by 
gate is not an outdated art. It is, however, different from the gate-
level design of the past. Here we give an overview of components, 
design rationales, and particular solutions.

Employing Tiny LogicEmploying Tiny Logic
Designing Combinational Circuitry Designing Combinational Circuitry 

FIGURE 3 
Gates with three inputs. In tiny packages, only single devices are available.

FIGURE 2 
Gates with two inputs. There are single and dual gates.

FIGURE 1 
Buffers and inverters. One, two, or three of those devices are housed in one IC 
package (single, dual, or triple devices). 

FIGURE 4 
Two examples of somewhat more complex devices. Above a 2-to-1 data selector/
multiplexer with Schmitt-trigger inputs (74AUP1T157), below a 2-to-4 line decoder 
(74LVC1G139). The similar multiplexer 74AUP1T158 has an inverted output.

FIGURE 5 
A few of the tiny IC packages (not to scale).
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are many package types around, the manufacturers have 
different designations, suffixes, and trademarks, and they are 
always busy inventing something new, making things smaller 
and smaller. The latest types are indeed very tiny. They have 
no leads, and the backsides are covered with solder contacts. 
To give a first impression of what we’re talking about, 
Figure 5 shows a few examples. Beyond that, refer to the 
manufacturer’s catalogs, application notes, datasheets, and 
cross-reference tables (see, for example, [2-4] and [7-14]).

The “tiny” or “little” IC series comprise sets of different 
gates: AND, NAND, OR, NOR, XOR, and XNOR. Additionally, 
there are multipurpose devices that can be configured 
to perform the desired logic function. So, the problem of 
implementing all the combinational functions by a single type 
of gate does not exist (in contrast to the distant past, where 
designers had to get by with only NANDs (TTL) or NORs (ECL)). 
Designing with such components could be dubbed trickery in 
the small. What is taught in introductory digital engineering 
courses may not be that helpful. Therefore, we will not 
proceed by explaining Karnaugh-Veitch diagrams and the like. 
Devices with three-state outputs, flip-flops, analog switches, 
and so on we have omitted here. Instead, we will concentrate 
on straightforward combinational circuits.

A FEW APPLICATION EXAMPLES
Tiny logic solves small or straightforward logic tasks on 

the spot. There is no talk of implementing arithmetic-logic 
units (ALUs) or finite state machines (FSMs). 

A simple application is patching, as illustrated in Figure 6. 
A complex IC generates an output signal whose behavior 
fits well with an input of another highly integrated device. 
Unfortunately, the signal is generated active-Low, but the 
input of the receiving IC is active-High. A tiny inverter is the 
most straightforward solution to this problem.

Figure 7 depicts a long signal trace running across the 
board. Such traces may pick up noise and may cause the 
signal edges to deteriorate. The integrated circuit shown here 
needs, however, a clean signal with steep edges. Think, for 
example, of a clock or reset input. A tiny buffer, placed in the 
near vicinity, would solve the problem. The alternative shown 
concerns diagnostics and PCB testing. Here, a tiny multiplexer 
allows for the injection of a diagnostic signal (think of clock 
pulses excited by a tester or a service processor) if the 
circuitry is switched to a diagnostic mode.

The example in Figure 8 concerns an application where 
direct-acting (that is, non-programmable) hardwired logic is 
a mandatory requirement. In case of an emergency, signals 
are to be brought to determined levels. All further activities 
are to be inhibited. Low levels can be enforced by AND gates, 
high levels by OR gates.

FIGURE 6 
A tiny inverter adapts an active-Low output to an active-High input.

FIGURE 8 
Tiny gates enforce particular signal levels in case of an emergency.

FIGURE 7 
Lengthy traces impede signal integrity. A tiny device in the near vicinity ensures 
a clean signal at the IC’s input. If the signal’s edges are deteriorated, a buffer 
with a Schmitt-trigger input is the obvious choice. The multiplexer beyond (the 
device shown in Figure 4) is an alternative if diagnostics or PCB testing are to be 
supported.

FIGURE 9 
Particular conditions or bit patterns on signal lines are to be detected. It could be 
done by a decoder in the FPGA or ASIC or by comparing read-in bit patterns by 
software. This, however, requires connecting all signal lines, thus wasting precious 
I/O pins (a). If the conditions are detected by external circuitry, only one or a few 
pins are needed. Thus we could get by with an MCU, FPGA, or ASIC in a smaller 
package (b).

a) b)
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The package contributes crucially to the cost of a complex 
integrated circuit. So it’s understandable to want to get by 
with fewer pins and a package that’s less costly to purchase 
and process. Occasionally, external circuitry can save on the 
required number of pins considerably, as illustrated in Figure 9.

For example, some or even many sensor signals may be 
OR-ed together to trigger an interrupt in a microcontroller 
(MCU) (Figure 10a). A further example is detecting conditions 
on signal lines for conditional branching or to trigger 
interrupts. For that, we must implement so-called product 
terms. That means AND-ing together the particular signals, 
either true or inverted (Figure 10b).

To house this kind of circuitry, we may think of a CPLD or even 
a low-cost FPGA. Occasionally, this approach is recommended 
by manufacturers of programmable logic [46-48]. The obvious 
advantages are that functional complexity is not restricted, and 
you can master such tasks without being a seasoned digital 
designer, at least in most cases. (I recommend resorting to 
the Verilog hardware description language (HDL) and leaving 
the rest to the IDE.) The benefits of tiny logic appear if only 
straightforward combinational functions are to be implemented. 
Then you will get by without HDL and IDE at all. 

Figure 11 illustrates a further advantage. Imagine a 
somewhat larger PCB with sensors (S) or other signal sources 
spread over the total real estate. When all those signals are to 
be OR-ed or AND-ed by a single CPLD or FPGA, all the signal 
lines have to be routed to this device. Therefore, it could make 
sense to also distribute the combinational circuitry over the 
PCB, especially if cost is a primary concern and the number 
of PCB layers should be kept as low as possible.

DESIGNING WITH TINY LOGIC
Our primary design challenges are twofold. The first is 

to choose tiny components wisely. The second consists of 
cascading such components so that more, or even many, 
input signals can be attached. For both goals, the sharpest 
tool in our box is DeMorgan’s law (Figure 12). There is an 
uncountable number of sources that deal with Boolean algebra 
and basic gate-level design. More often than not, however, 
Boolean functions are not treated as tools for problem-solving 
but solely as objects of minimization. I recommend looking 
first into the technical documentation the semiconductor 

FIGURE 10 
An apparent advantage of the external combinational circuits is that we could get by 
with an MCU in a cheaper package (that is, one with fewer pins).

FIGURE 11 
Tiny logic may be dispersed over the printed circuit board (PCB). Here, sensors (S) 
are shown. They are to be OR-ed together to trigger interrupts in the MCU. When 
done in a CPLD, for example, all sensor signals must be routed to this device. When 
spreading OR gates in the vicinity of the sensors, only a few traces need to be run 
to the MCU. 

FIGURE 12 
DeMorgan’s law describes the so-called duality between AND, OR, the inversion of 
the outputs, and the inversion of the inputs. AND and OR can be swapped against 
each other, provided non-inverted signals are inverted and vice versa. 

FIGURE 13 
How basic gates act on active-Low signals. 
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manufacturers provide (like [4] or [52]), and not to begin with 
college-level textbooks.

Capturing the problem and understanding the design 
task: The problems to be solved are not that complicated. 
Nevertheless, they must be understood in their intricate 
details. A well-proven approach is to describe the problem as 
painstakingly as possible using the terms AND, OR, and NOT. 
This way, we will obtain at first colloquial and then formalized 
Boolean expressions. They are to be implemented by our tiny 
components. Mostly, it could be done best by assembling the 
combinational circuits step by step from small basic gates, 
without dealing with two-level canonical forms, Karnaugh-
Veitch diagrams (K-maps), and the like. A well-proven overall 
approach is to first solve the pure logical design problem, 
assuming that all types of tiny devices may be applied. The 

levels and supply voltages, the IC families, packages, and so 
on are dealt with in a second pass.

Logic levels and signals: Propositional logic knows only 
two values. Applying them to digital design seems to be 
the most straightforward thing on earth. Those values are, 
however, to be assigned to the problem to be solved, and it’s 
easy to mix something up, causing annoying design errors. 
So be careful and better look once more. In the beginning, 
we will assume that all is without a hitch. The supply voltage 
(VCC), the Low and High levels, and the IC families fit well 
together. The problems we will discuss later. 

The logic levels are physical facts. If a level is nearer to 
minus infinity (–∞), it is called Low; if nearer to plus infinity 
(+∞), it is called High.

Propositional logic is concerned with truth. George Boole 
has equated truth with 1 and falsehood with 0. In addition, 0 
and 1 are the digits of binary numbers. If the 0 is represented 
by the Low level and the 1 by the High level, we speak of 
positive logic. The opposite assignment is called negative 
logic.

FIGURE 14
Turning the 8051 into a v. Neumann machine where instructions and data are 
located in the same address space can be done by two tiny devices, an AND gate, 
and an inverter.

FIGURE 15 
Positive (above) and negative (below) logic.

FIGURE 16 
Inverted inputs will alter the function.

FIGURE 17 
Some particular properties of the XOR and XNOR functions.

FIGURE 18 
Extending the number of inputs by cascading.

FIGURE 19 
Cascading by daisy-chaining.
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particular function, we begin with its truth table. The control 
inputs of all AND gates that correspond to ones in the result 
column are connected to High, the remaining to Low.

An ensemble of 2n AND gates, one for each bit pattern, 
is essentially a decoder. So let us look for basic types of 
components in which 2n product terms are readily decoded. 
There are three such basic types, the binary (1-out-of-n) 
decoder, the multiplexer, and the addressable memory. 
Integrated decoders (like the venerable 74x138) contain 

only the AND gates. OR-ing is to be done outside. Thus, for 
practical reasons, the decoder-based solution may be omitted 
here.

The multiplexer as a universal combinational building 
block: The multiplexer is a combination of a data selector 
and an address decoder. A multiplexer with n address inputs 
selects one of the data inputs to be gated through to the 
output. Thus, one can use a 2n-to-1 multiplexer to implement 
any combinational function of n variables. It requires only 
wiring the data inputs to Low or High, according to the result 
column of the corresponding truth table (Figure 32). Thus, 
the multiplexer becomes a small read-only memory (ROM). In 
some FPGA families, the logic cells are implemented this way. 
To be programmable, the multiplexer inputs are attached, 
for example, to the flip-flops of a shift register or to flash 
memory cells.

Unfortunately, the series of tiny logic components contain 
no multiplexers with a useful number of inputs (4, 8, or even 
16). Therefore, you must resort to components in larger 
packages. Occasionally, analog multiplexers may work, too. If 
break-before-make behavior is not guaranteed, I recommend 
not wiring the inputs directly to VCC but applying the High 
voltage via a pull-up resistor to limit eventual shoot-thru 
currents.

The addressable memory—a universal combinational 
building block: The memory cells are selected by addressing. 
n address bits correspond to 2n memory cells. Referring to 
the expansion theorem, the address decoder corresponds 
to the AND gates, the stored bits correspond to the control 
inputs, and the bit line implements the OR function. Thus, 
implementing a combinational function requires nothing 
more than storing the result column of the truth table.

The address inputs are connected to the input signals; the 
memory cells are filled with ones or zeros according to the 
truth table. In this way, any combinational function can be 
implemented, limited only by the storage capacity.

In some FPGA families, the logic cells contain small 
RAMs, the so-called lookup tables (LUTs), to implement the 
combinational functions. Larger FPGAs also contain dedicated 
RAM structures, like distributed RAMs (that are LUTs operated 
as addressable RAMs instead of combinational circuits) and 
block RAMs. In an example LUT, a RAM has a storage capacity 
of 64 bits. Hence it can accommodate a combinational function 
of 6 inputs. Dedicated RAMs can be configured for different 
word lengths, for example, 16k x 1, 8k x 2, 4k x 4, and so 
on. A 16k x 1 block RAM could accommodate a combinational 
function of ld 16k = 14 inputs. 

Outside the FPGAs, the principle of stored truth tables 
can be implemented by ROMs with an asynchronous memory 

interface, thus limiting the number of inputs 
between, say, 8 to 20. Here we take it as a matter 
of course that we want to get by with a simple 
design and low cost.

The idea may occur to let a ROM absorb some 
combinational functions that otherwise would 
be spread over the PCB (Figure 33). There is, 
however, a caveat. Memories with an asynchronous 
interface are internally clocked devices. They have 
sequencers built-in that detect when an address 
or control signal changes its level. Then they 
start a new access cycle. In the course of this 
cycle, the data outputs may become temporarily 

FIGURE 32
A Boolean function of three variables implemented by a multiplexer. Its address 
decoder acts as the decoder depicted in Figure 31. Suitable devices are 74x151 
8-to-1 multiplexers or 8-channel analog switches, like the NX3L4051 [36]; this 
device guarantees break-before-make, so the inputs may be connected directly 
to VCC.

FIGURE 33 
A historical example of a ROM housing the truth tables of some combinational 
functions. Thus, it substitutes a considerable number of gates. Some of the Boolean 
equations are shown here, as they have been entered into the development system. 
However, as straightforward as the design idea seems, there are some gotchas to 
observe (which I had—decades ago—learned the hard way). 

Family VCC range
Output 
drive

Input 
tolerance

IOFF 
protection

AUP 0.8 to 3.6 V 4 mA 3.6 V Yes
AUC 0.8 to 2.7 V 8 mA 3.6 V Yes
LVC 1.65 to 5.5 V 24 mA 5.5 V Yes
AHC 2.0 to 5.5 V 8 mA 5.5 V Yes
LV1T 1.8 to 5.5 V 7 mA 5.5 V No

TABLE 1 
Logic families comprising tiny gates (according to [2]).
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Generally, there are two kinds of signals. The first carries 
binary digits, ones or zeros. They have nothing to do with 
truth, falsehood, activity, idleness, and the like, but are 
simply two values of equal significance. Signals of the second 
kind exert activities. The logic levels represent two states, 
idle (or off or deasserted), and active (or on or asserted). 
In this regard, we speak of signals that are active-Low or 
active-High.

As a first example, Figure 13 shows how two active-Low 
signals can be combined by AND, NAND, OR, and NOR gates. 
If the output is to be active-Low, an AND gate acts as an OR 
(Figure 13a), and an OR gate as an AND (Figure 13b). If the 
output is to be active-High, a NAND is to be used instead of 
the AND (c), and a NOR instead of an OR (d).

In one of the earliest applications of tiny logic, the AND 
gate of Figure 13a is employed to turn the venerable 8051 
microprocessor (MPU) into a von Neumann machine (Figure 
14). Architecturally, the 8051 has separate memories for 
programs and data (Harvard architecture). It is obvious to 
store programs in the ROM and data in the RAM. In some 
applications, however, it is desirable to have a unified 
memory (von Neumann architecture). PSEN# signalizes that 
instructions are to be fetched. RD# signalizes that data 
bytes are to be read. To get access to both memories for 
instructions as well as for data, a joint output enable (OE#) 
signal is generated by OR-ing both low-active signals. To 
select the ROM or the RAM, the highest-order address bit is 
used here, requiring, in addition, a tiny inverter.

Positive and negative logic: An AND in positive logic 
corresponds to an OR in negative logic and vice versa. The 
same correspondence applies to NAND and NOR, as well as to 
XOR and XNOR (Figure 15).

Gates with inverted inputs: If the inputs of a gate are 
inverted or if inverted signals are applied, the gate’s function 
will change according to DeMorgan’s law, as depicted in 
Figure 16.  

XOR and XNOR: XOR stands for exclusive OR; XNOR is an 
XOR with the output inverted. An XOR gate with two inputs 
signalizes inequality, and a corresponding XNOR signalizes 
equality. In other words, the XNOR behaves as a single-bit 
equality comparator. A positive logic XOR corresponds to 
a negative logic XNOR and vice versa. Both gates can be 
operated as controllable inverters (Figure 17). The output of 
an XOR with an arbitrary number of inputs signalizes a one if 
the number of ones at the inputs is odd (odd parity). 

Cascading: Cascading means composing a gate with many 
inputs from gates having few inputs. Non-inverting gates of 
the same type can be cascaded easily (Figure 18a). To cascade 
inverting gates, additional inverters must be interspersed 
(Figure 18b). With the comprehensive assortment of gate 
types available nowadays, the most straightforward solution 
is to combine non-inverting and inverting gates (Figure 18c).

There are two basic topologies to cascade gates: the daisy 
chain (Figure 19) and the inverted tree (Figure 20). For a 
particular number of inputs, both need the same number 
of gates. Only the propagation delay is different. In a daisy 
chain, it increases linearly with the number of cascaded 
gates. In the tree, it increases logarithmically. If propagation 
delay is not that important, you may prefer the topology that 
is most expedient for routing.

By using NAND and NOR gates and applying DeMorgan’s 
law, you can implement AND, OR, NAND, and NOR functions 
with an arbitrary number of inputs (Figure 21 and Figure 22). 

FIGURE 20 
Cascading by connecting the gates according to an inverted-tree topology.

FIGURE 21 
Making good use of DeMorgan’s law. a) shows an AND, b) an OR with four inputs 
each. NAND and NOR functions are obtained by not inverting the output.

FIGURE 22 
An example of a DeMorgan tree. The AND shown here has 16 inputs. It consists of 
two levels or layers of circuits according to Figure 21a. A similar structure, built 
with circuits according to Figure 21b, would yield a corresponding OR gate.
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A NOR corresponds to an AND of inverted signals. An AND with 
many inputs can thus be implemented with NAND gates whose 
outputs are connected to a NOR gate. A NAND corresponds to 
an OR of inverted signals. An OR with many inputs can thus 
be implemented by NOR gates whose outputs are connected 
to a NAND gate. XORs are cascaded like non-inverting gates. A 
wide XNOR can be built from cascaded XORs with an inverter 
downstream.

To implement gate functions with even more inputs, 
cascade an appropriate number of the circuits shown in Figure 
21 (Figure 22). If all gates have two inputs, such so-called 
DeMorgan trees may be built with four, 16, 64 (and so on) 
inputs. Using gates with three inputs, the smallest DeMorgan 
tree would have nine inputs. A two-level tree (similar to Figure 
22) would have 81 inputs, and so on. (See, for example, [52] 
for a comprehensive description of DeMorgan trees.)

AND-ing and OR-ing true (not inverted) and inverted 
signals: Figure 23 depicts the problem together with the 
solution. Some of the input signals are attached directly, 
some are to be inverted. Typical applications are to detect 
particular conditions, like a bit pattern on a data bus and 
some control signals on, some off, or to combine sensor 
signals, some of them active-High, others active-Low. The 
solution follows from DeMorgan’s law. A NOR acts as an AND 
of inverted variables, and a NAND as an OR. Thus, all input 
signals to be inverted are connected to a NOR or NAND gate, 
respectively.

Expanding with diodes: I discussed diode gates in 
my previous article (“Solving Level-Translation and Logic 
Problems: Using Discrete Components,” Circuit Cellar 395, 
June 2023) [37]. Here, where only CMOS buffers or gates 
are to be driven, the static load current may be neglected. 
Occasionally, diodes could be a viable solution for expanding 
the number of inputs (Figure 24). They are small and cheap, 
and they need no power supply (GND/VCC) traces on the PCB.

The approach has, however, some caveats. A diode AND 
increases the Low level, and a diode OR decreases the High 
level by one forward voltage drop (VF). Because of the low 
voltages, we cannot be as generous as in a 24V environment 
(as done in [37]). The output levels of the diode gates must 
comply with the input specification of the downstream device. 

The low level must be well below VILmax, the high level well 
above VIHmin. Due to their low forward voltage drop, Schottky 
diodes are an obvious choice. On the other hand, if there are 
more than a few diodes wired together, their reverse current 
could be a problem. As a rule of thumb, Schottky diodes could 
work in CMOS environments with supply voltages well above 
2V. The example in Figure 24 illustrates that for a supply 
voltage (VCC) of 2.5V and a VF of approximately 0.4V, the levels 
of the Y output come dangerously near the specified ranges 
of input levels of the downstream device. When contemplating 
this solution, strive to keep VF low by selecting appropriate 
components. Small-signal Schottkys may be a good choice 
[33, 34]. They are also available in packages containing, for 
example, two diodes (isolated or with the cathodes or anodes 
connected). Bus termination arrays contain more diodes, 
but their VF may be too high [35]. RL is to be dimensioned 
according to (VCC – VF)/IF. Setting the diode’s forward current IF 
is a compromise: not too high to keep VF low, but high enough 
to ensure proper diode operation and sufficiently fast charging 
and discharging of the parasitic capacitances (say, between 
0.1mA and 1mA). The rise and fall times should be within the 
limits of the downstream circuit’s specification. Beware that 
Schmitt-trigger inputs may be no remedy here because their 
high-to-low threshold voltage is considerably lower than VCC/2. 
So, it’s wise not to neglect a worst-case analysis.

Logic by wiring: Open-drain outputs can be wired (dotted) 
together (Figure 25). If at least one of the output transistors 

FIGURE 24 
Diode gates. a) AND; b) OR. The example on the right shows the influence of the 
diode’s forward voltage, assuming worst-case output voltages of the upstream 
gates and a VF of 0.4V. For the level specifications of the 2.5V logic, see Figure 34.

FIGURE 25 
Wired (dotted) logic. a) Dotted active-High signals yield an AND function. b) If the 
dottet signals are active-Low, a NOR results (colloquially called the wired-OR). c) 
The AND function can be implemented by dotting AND gates. Inverting the output 
yields a NAND. d) Dotting NAND gates results in an AND-OR-INVERT (AOI) Function. 
Inverted, it is the sum-of-products (SOP) function.

FIGURE 23 
True and inverted signals are to be AND-ed or OR-ed. Resorting to DeMorgan’s 
law, we can save on inverters and get by with fewer components. a) shows how to 
implement a minterm or product term, b) how to implement a maxterm.
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is switched on, the output level will be low. If all transistors 
are switched off, the output level depends on the voltage 
drop across the load resistor. Properly dimensioned, the 
output voltage will remain in the region of the High level. 
In a nutshell: Low is caused by the transistor switched on, 
and High by the load resistor if the transistor is switched off. 
The term “wired-OR” is widely known. It may be, however, 
somewhat misleading. It is only correct when we speak of 
negative logic or signals that are active-Low. If the output 
is active-High, the circuit acts as a NOR. Concerning positive 
logic or active-High inputs, the circuit behaves like an AND.

In tiny-logic IC series, the assortment of open-drain 
devices comprises buffers (non-inverters), inverters, NAND 
gates, and AND gates. The outputs are mostly specified for 
voltages higher than VCC (for example, up to 3.6V or even above 
5V). Therefore, such components may also be used for level 
translation. Combinational functions with many inputs can 
be implemented by wiring together (dotting) an appropriate 
number of open-drain components. To implement a wired-
AND, active-High-signals are to be attached via AND gates or 
non-inverters, active-Low signals via inverters. The wired-
OR function results if active-Low signals are attached via 
non-inverters and active-High signals via inverters. Strictly 
speaking, it is, however, a NOR because each active signal 
will enforce a Low output. Dotted NAND gates yield an AND-
OR function with an inverted output, the so-called AND-OR-
INVERT (AOI) function.

Dimensioning the load Resistor RL: In general, this 
problem has been discussed in my previous article [37]. 
Here, where only CMOS buffers or gates are to be driven, the 
static load current may be neglected. More significant is that 
the Low-to-High transitions are not too slow. This depends 
on the RC time constant. Therefore, RL should be as low as 
possible. As a rule of thumb that leaves a sound margin, 
you may spend half of the rated Low-level output current 
IOL of a driving upstream device. Thus, RL will be calculated 

according to VCC divided by half of the datasheet value of IOL. 
You may also contemplate getting by with a lower current 
and compensate for the less steep Low-to-High edges by a 
downstream Schmitt-trigger.

A straightforward example: Imagine a PCB similar 
to Figure 11 and assume that 20 sensor outputs are to be 
OR-ed to excite an interrupt input of an MCU. Let’s begin 
with active-High sensor outputs. When cascading OR gates 
with two inputs, 19 devices would be required. A diode-
OR would require 20 diodes, the load resistor, and a buffer 
(with a Schmitt-trigger input, if appropriate). A wired-OR 
would require 20 open-drain inverters, the load resistor, and 
the final buffer (with a Schmitt-trigger input). If all sensor 
outputs are active-Low, the desired OR function can be 
implemented by cascading AND gates, by a diode-AND, or by 
a wired-AND built with open-drain non-inverters. If there are 
sensor outputs of both types, an appropriate solution should 
be found by making good use of DeMorgan’s law. The wired-
OR is the most straightforward solution because it is only 
necessary to select appropriate open-drain buffers, that is, 
non-inverters for the active-Low and inverters for the active-
High sensors. Sensors with active-Low open-drain outputs 

FIGURE 28 
Configuration examples (1). The 1G57 [26]. The 1G58 [27] implements the inverted 
function.

FIGURE 26 
Two straightforward multipurpose devices [31] [32]. 

FIGURE 27 
Examples of configurable multiple-function gates. They have Schmitt-trigger inputs 
(that are not shown here).
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may be wired without additional buffering, provided their 
output specifications permit.

CONFIGURABLE LOGIC
Semiconductor manufacturers offer some types of 

tiny configurable gates that can be turned into inverters, 
buffers, ANDs, ORs, and so on simply by connecting the pins 
appropriately to signals, ground (= Low), or the supply voltage 
(= High). Such components (configurable multiple-function 
gates) can be used wherever straightforward combinational 
functions are required. They combine some functions that 
are often needed. In many applications, a configurable gate 
replaces two or even more single gates. Another advantage 
is that they can substitute single gates and so reduce the 
inventory. We begin with two straightforward devices, shown 
in Figure 26. Occasionally, such a 3-input function (AND-
OR or OR-AND) will come in handy. For example, an AND-
OR could be the last device downstream of cascaded gates 
implementing a sum-of-products (SOP) function (like A ⋅ B 
∨ C ⋅ D ⋅ E ∨…). Beyond that, the devices can substitute AND 
gates, OR gates, and buffers. Because they lack inversion, 
their versatility is, however, somewhat restricted.

The theoretical foundation of the more advanced 
configurable devices are so-called lattices of Boolean 
functions. Such a lattice results from a single Boolean 
function by feeding each input with a signal, an inverted 
signal, a Low level, or a High level. If the original function 
has n inputs, we may imagine the entire lattice described 

given by 4n truth tables corresponding to all the combinations 
mentioned above. The obvious quick-and-dirty approach is to 
try out all combinations. (Yes, complexity of the order 4n is 
far from being quick, and the theory provides more elegant 
approaches.) The real trick is to find universal Boolean 
functions whose lattices contain as many usable functions 
as possible. Additional combinational functions result from 
making use of DeMorgan’s law. But you can’t have everything 
at once. The manufacturers are primarily concerned with 
getting by with a single package for many typical applications 
that is also as small as possible. 

The really universal component for all possible functions 
of two variables would be a 4-to-1 multiplexer. That would, 
however, require a larger package with at least 9 pins 
(including GND and VCC). According to Boolean lattice theory, to 
be fully universal occasionally requires inverting input signals. 
To avoid separate inverters, the manufacturers offer some 
devices in pairs, with the output and one of the inputs either 
non-inverted or inverted (Figure 27). Figures 28 to 30 show a 
few configuration examples. For more details and exhaustive 
descriptions, we refer to the corresponding datasheets (for 
example, [25-30]).

The pair 1G57/1G58 has an AND gate with two inverted 
inputs. The corresponding AND gate of the pair 1G97/1G98 
has only one inverted input. With the 1G57/1G58 you can build 
XOR and XNOR gates, but not a 2-to-1 multiplexer; with the 
1G97/1G98 it is the other way around. The 1G99 is basically 
a 1G97 enhanced with an XOR gate and tri-state output. The 
functions of the 1G97 or 1G98 can be emulated by wiring the 
XOR input D to Low or High, respectively. In addition, the 
circuit can be configured as an XOR or XNOR gate.

UNIVERSAL LOGIC
What we strive for are universal or general-purpose 

integrated circuits to implement arbitrary combinational 
functions. In contrast to CPLDs and FPGAs, however, they 
should do without programming.

The theoretical foundation is Boole’s and Shannon’s 
expansion theorem. On n signal lines, 2n different combinations 
of Low and High levels may occur. For each of those 
combinations, an AND gate—in other words, a product term—
is provided. Each of the 2n AND gates has an additional control 
input. If this input is active, the AND gate will contribute to 
the function to be implemented; otherwise, it will remain idle. 
All AND gates are OR-ed together (Figure 31). To implement a 

FIGURE 31
Boole’s and Shannon’s expansion theorem explained. How an arbitrary Boolean 
function is mapped to a universal sum-of-products (SOP) function.

FIGURE 30 
Configuration examples (3). The 1G99 [30]. The tri-state output is not shown here. 
To enable the output, connect OE to GND.

FIGURE 29 
Configuration examples (2). The 1G97 [28]. The 1G98 [29] implements the inverted 
function.    
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unstable. These oscillations affect all data outputs, regardless 
of the combinational function they belong to. Think, for 
example, of an AND function with the inputs A, B, C, and 
other functions depending on input signals D, E, F, and so 

on. Implemented with gates, the AND depending on A, B, C 
will not be affected if, for example, the signal E switches. 
In the ROM implementation, however, the AND output may 
show pulses, although the AND function does not depend on 
the input signal that has changed. On the other hand, ROM-
based lookup tables are an expedient solution for FSMs, code 
conversion, trigonometric functions, and so on. What all such 
applications have in common is that the stored words and 
hence the output signals belong together and are subject to 
synchronous operation. 

Why not use an MCU?: Since the advent of the 
microprocessor, emulating combinational circuitry has 
occasionally been a topic in application notes [49-51]. When 
microseconds do not matter, it could be a viable approach 
because programming MCUs is a much more widespread 
skill than CPLD/FPGA design. Moreover, there is no need 
to purchase new development software, programming 
equipment, and so on. 

The most straightforward approach would be to store the 
truth tables and let the MCU act like a ROM addressed by the 
input signals (only slower, of course). Such a program must 
read the input signals, assemble the memory address, read 
the addressed truth table entry, and emit the output signals. 
Bit processors, digital simulators, or even fully-fledged 
Boolean machines belong to the more demanding projects. 

SOME GENERAL DESIGN CONSIDERATIONS
Selecting the logic family: The components must fit into 

the overall design. Above all, it relates to the supply voltage 
and the logic levels (Table 1 and Figures 34, 35). Additional 
stipulations to which we (as designers) must comply may 
concern the IC family, power consumption, speed, packages, 
soldering processes, testability guidelines, and so on. 

When the gates are to be used in a circuit with different 
supply voltages and logic levels, appropriate level-translation 
solutions are to be found. For some design challenges, well-
suited components are readily available. So skim first the 
catalogs and selection tables (on the Internet) before trying 
to find a tricky solution on your own.

Partial power down: A problem may occur when the 
supply voltage of particular functional units is switched off, 
for example, to reduce power consumption. Our gates could 
be without power in an otherwise powered environment 
or vice versa. Voltages at the inputs of conventional CMOS 
devices powered off (that is, with a VCC of 0V) may cause 
short-circuit currents to flow. Provisions to prevent this are 
called IOFF protection. Most of the low-voltage logic families 
have this feature (as mentioned in Table 1).

Overvoltage-tolerant inputs: Overvoltage/input tolerance 
means that the input voltage VIN may rise beyond the supply 
voltage VCC. Typically, the limit is the rated maximum supply 
voltage.

Voltage-level translation: Let us assume a particular 
supply voltage (VCC). If the input voltage is lower, you 
need a compliant device, or you will have to interpose a 
level-translation circuit. If the input voltage is higher, you 
should check whether your logic family tolerates it (Table 2, 
Figure 36). Otherwise, you may resort to level-translation 
devices or try some trickery, like current-limiting via series 
resistors ([4] [40]). 

General design rules: They are to be followed even when 
the digital design task seems straightforward. Semiconductor 

FIGURE 34 
Logic level specifications at a glance (some minor differences neglected). TTL and 
5-V CMOS are shown for reference.

FIGURE 35 
Basic requirements for output and input levels. The downstream device should see 
definite Low and High levels even when noise, ground bounce, and the like are 
present. So, leave reasonable margins for the maximum Low and the minimum 
High levels.
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manufacturers provide ample literature to be studied ([52-
59] are only a few examples). The most basic rules concern 
unused inputs, ground and power supply routing, and bypass 
capacitors. Gross errors that beginners sometimes commit 
are leaving unused inputs open, letting the auto-router handle 
the ground and VCC traces like signals, and locating the bypass 
capacitor far away from the integrated circuit, perhaps in the 
opposite corner of the PCB. 

Testability: When designing in earnest, that is, for 
manufacturing in series, this aspect should not be neglected. 
Especially if you contemplate somewhat tricky solutions, like 
diode gates, open-gate outputs, or universal logic based on 
multiplexers, ROMs, or even MCUs, you should team up early 
with the test people.

SUMMARY AND SUGGESTIONS
Unassuming tiny components still play a significant role. 

They support sophisticated MCUs, FPGAs, and ASICs. In some 
design projects, where only minor digital problems are to be 
solved, they may allow to get by without programmable logic, 
like a CPLD or an FPGA, components which would require you 
to purchase programming devices and development software. 
Here we gave an overview of tiny gates and some characteristic 
peculiarities of designing with them. Furthermore, we 
discussed basic principles of configurable and universal logic 
devices. The proposals of substituting gates with ROMs and 
even MCUs seem to defy our intent not to program. Our 
excuse is that such components are less costly than FPGAs 
and that employing them requires only run-of-the-mill 
computer programming skills without being familiar with 
digital design, hardware description languages, and CPLD/
FPGA programming. The programmable universal Boolean 
machine is a topic in itself (to be dealt with later). 

FIGURE 36
A few hints on how to solve level-translation problems.
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Logic family, 
characteristic feature

Direction Remarks

LV1T devices

Up: 
1.2V to 1.8V 
1.8V to 2.5V 
1.8/2.5V to 3.3V 
2.5/3.3V to 5.0V 
Down: 
2.5/3.3/5.0V to 1.8V 
3.3/5.0V to 2.5V 
5.0V to 3.3V

Output level corresponds to VCC between 1.8 to 5.0V 
Up translation due to Schmitt-trigger inputs accepting 
appropriately low input voltages as High levels. 
Down translation due to overvoltage-tolerant inputs.

AUP1T devices

Up: 
1.8/2.5V to 3.3V 
1.8V to 2.5V 
Down: 
3.3V to 2.5V

Output level corresponds to VCC between 2.5 to 3.3V. 
Principles of operation similar to VL1T, but reduced voltage 
ranges.

Open-drain outputs Up and down
By connecting the load resistor to a supply voltage lower or 
higher than the device’s VCC

Overvoltage-tolerant inputs Down The device tolerates input voltages higher than its VCC.

TABLE 2
Voltage-level translation by tiny devices (according to [45]).
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