
w DC-DC Converters w Holographic Display via Raspberry Pi |

Query a Database in PHP—Backend Web Development |

Playable MIDI Synthesizer w How They Did It Before Transistors |

Secure C/C++ Code with CHERI | NoteCard for Embedded Communication

w The Future of RF Surveillance

EMBEDDED DISPLAYS
NOVEMBER 2023

ISSUE 400CIRCU
IT CELLAR | ISSU

E 400 | NOVEM
BER 2023

circuitcellar.com

circuitcellar.com

Inspiring the Evolution of Embedded Design

EMBEDDED DISPLAYS

https://www.cc-webshop.com

CIRCUIT CELLAR • NOVEMBER 2023 #4002

INPUTVoltageVoltage

swallace@circuitcellar.com

Issue 400 November 2023 | ISSN 1528-0608

CIRCUIT CELLAR® (ISSN 1528-0608) is published monthly by:

KCK Media Corp.
PO Box 417, Chase City, VA 23924

Periodical rates paid at Chase City, VA, and additional offices.
One-year (12 issues) subscription rate US and possessions

$50, Canada $65, Foreign/ ROW $75. All subscription orders
payable in US funds only via Visa, MasterCard, international

postal money order, or check drawn on US bank.

SUBSCRIPTION MANAGEMENT

Online Account Management: circuitcellar.com/account
Renew | Change Address/E-mail | Check Status

CUSTOMER SERVICE

E-mail: customerservice@circuitcellar.com

Phone: 434.533.0246

Mail: Circuit Cellar, PO Box 417, Chase City, VA 23924

Postmaster: Send address changes to
Circuit Cellar, PO Box 417, Chase City, VA 23924

NEW SUBSCRIPTIONS

circuitcellar.com/subscription

ADVERTISING

Contact: Hugh Heinsohn

Phone: 757-525-3677

Fax: 888-980-1303

E-mail: hheinsohn@circuitcellar.com
Advertising rates and terms available on request.

NEW PRODUCTS

E-mail: product-editor@circuitcellar.com

HEAD OFFICE

KCK Media Corp.
PO Box 417

Chase City, VA 23924
Phone: 434-533-0246

COPYRIGHT NOTICE

Entire contents copyright © 2023 by KCK Media Corp.
All rights reserved. Circuit Cellar is a registered trademark

of KCK Media Corp. Reproduction of this publication in
whole or in part without written consent from

KCK Media Corp. is prohibited.

DISCLAIMER

KCK Media Corp. makes no warranties and assumes no
responsibility or liability of any kind for errors in these

programs or schematics or for the consequences of any such
errors printed in Circuit Cellar®. Furthermore, because of

possible variation in the quality and condition of materials and
workmanship of reader-assembled projects, KCK Media Corp.
disclaims any responsibility for the safe and proper function

of reader-assembled projects based upon or from plans,
descriptions, or information published in Circuit Cellar®.

The information provided in Circuit Cellar® by KCK Media
Corp. is for educational purposes. KCK Media Corp. makes

no claims or warrants that readers have a right to build
things based upon these ideas under patent or other

relevant intellectual property law in their jurisdiction, or
that readers have a right to construct or operate any of

the devices described herein under the relevant patent or
other intellectual property law of the reader’s jurisdiction.
The reader assumes any risk of infringement liability for

constructing or operating such devices.

© KCK Media Corp. 2023 Printed in the United States

I t’s funny introducing Circuit Cellar’s 400th issue. By most measures, I’m still
new at this magazine. I’ve been working here a little over a year, and have, as
of this publication, been the Editor-in-Chief of Circuit Cellar for 14 of its issues.
In no way is this milestone—four hundred issues!—my accomplishment.

Nor, for that matter, is any issue I’ve been a part of “my” accomplishment.
I’m the guy at a fancy restaurant who, after a team of highly trained expert chefs
prepare a dish, makes sure there are no unsightly food smears on the plate before
it goes to the table. Circuit Cellar’s quality, success, and longevity rests on the
shoulders of its tireless writers, some of whom have been with the magazine since
its inception. Each issue feels like a low-grade marathon, and I have the easy job. I
can’t fathom doing 400 of these, as some members of our staff have done.

On the heels of a well-received article he wrote, Steve Ciarcia was hired by BYTE
magazine in 1977 to write a column called “Ciarcia’s Circuit Cellar,” which presented
projects he was working on. The column grew in popularity until Steve decided in
1979 to start a company called Micromint that would sell kits based on the projects
he wrote about. These two ventures were a hit, and Steve enlisted the help of Ed
Nisley, Ken Davidson, and Jeff Bachiochi to contribute their technical expertise to the
column and its projects. When BYTE’s editorial direction changed a few years after
they were bought by McGraw-Hill, Steve founded his own magazine—this one—in
1988. (This means that we are also celebrating Circuit Cellar’s 35th anniversary this
year.) Many of the folks from BYTE followed Steve in this new endeavor. The Circuit
Cellar magazine team in those days consisted of Steve Ciarcia, Ken Davidson, Jeff
Bachiochi, Ed Nisley, Dan Rodrigues, Jeannette Dojan (who later became Steve’s
wife), Tom Cantrell, Dave Tweed, and many others. We still proudly count Jeff, Ken,
and Dave among our staff.

I ran into a wrinkle in this story during my research. Steve posits in his account of
Circuit Cellar’s origins and history [1] that it was Dan Rodrigues who first suggested
to Steve, upon hearing of BYTE’s redirection, that they start their own magazine. But
a few months ago, I received an e-mail from Bob Paddock, a former Circuit Cellar
writer who, in the ‘90s and ‘00s, was a part of the “Ask Us” group for Circuit Cellar
Online, and who also had his own column for a while. Bob claims that a comment
he made to Steve started the whole thing off. He wrote: “I said to [Steve], ‘What we
really need is a magazine for hardware, like Dr. Dobb’s Journal is for software.‘ He
responded, ‘Good idea,‘ and over a year or so later the first issue of Circuit Cellar
magazine was a reality.“ I think both accounts are true, for the record. In Steve’s
own telling, he relied on the help of numerous other “hardware nerds” (Bob’s term),
and I don’t doubt that, with the unwelcome changes taking place at BYTE, multiple
of these clever engineer-writers were thinking the same thing.

However it happened, we’ve come full circle. Because I wouldn’t be typing these
words if it weren’t for the decades of clever design, fascinating articles, and sheer
engineering fun that have made Circuit Cellar what it is today. Nor would any of us
be doing this if it weren’t for our readers, who are, more often than not, experts in
an increasingly sophisticated technical field who still find joy or knowledge in this
magazine’s pages. To borrow Steve’s phrase, “we truly have a non-superficial
readership.” So, yes, it feels funny to introduce
the 400th edition of Circuit Cellar. But it is no less
an honor, a privilege, and a delight. I’m grateful
to the Circuit Cellar team and to everyone
reading. Please enjoy this special issue.

[1] Steve Ciarcia, "Wondering How It All Began?" Circuit Cellar's
25th Anniversary Edition.

Circuit Cellar’s 400th Issue

mailto:swallace@circuitcellar.com
mailto:customerservice@circuitcellar.com
mailto:hheinsohn@circuitcellar.com
mailto:product-editor@circuitcellar.com
https://www.circuitcellar.com/subscription

circuitcellar.com 3

OUR NETWORK

 4 Building a Holographic
 Persistence-of-Vision Display
 Paint Light Into Ethereal Floating Images Using a Raspberry Pi Pico

Michael Crum, Joseph Horwitz, and Rabail Makhdoom

 12 Backend Web Development for MCU Clients
 Part 2: Querying a Database in PHP

By Raul Alvarez-Torrico

 22 RPiano: A Playable MIDI Synthesizer
 On a Raspberry Pi Microcontroller

By Samiksha Hiranandani

 TECHNOLOGY FEATURE 30 Embedded Displays By Michael Lynes

 DATASHEET 38 DC-DC Converters
 From the Hyper-Small to the Far Out

By Sam Wallace

 42 Picking Up Mixed Signals
 Before Transistors
 How Did They Do It Back Then?

By Brian Millier

 52 Embedded System Essentials
 How CHERI Helps Secure Your C/C++ Code
 On an FPGA

By Colin O'Flynn

 56 From the Bench
 Cellular, The Forgotten Wi-Fi
 Part 3: Using NoteCard, an Embedded Communications Module

By Jeff Bachiochi

 TECH THE FUTURE
 71 The Future of RF Surveillance
 Advancements in Drone RF Surveillance
 Harnessing High Bandwidth and Wide Tuning Range
 Software-Defined Radios (SDRs)

By Brandon Malatest

Bonus Digital Edition Feature Addition
 Designing Combinational Circuitry
 Employing Tiny Logic

By Wolfgang Matthes

SUPPORTING COMPANIES

NOT A SUPPORTING
COMPANY YET?

Contact Hugh Heinsohn
hugh@circuitcellar.com,
Phone: 757-525-3677,

Fax: 888-980-1303
to reserve space in the

next issue of Circuit Cellar.

Avnet 49
Bel Fuse 65
Bussboard 15
CCS, Inc. 69
EmbeddedTS 69, C4
Microchip 70
OmniOn 47
Per Vices 21
Renesas 37
Siborg Systems Inc. 9
STMicroelectronics 33
TDK C3
Texas Instruments 29

THE TEAM
FOUNDER Steve Ciarcia
PUBLISHER KC Prescott
CONTROLLER Chuck Fellows
EDITOR-IN-CHIEF Sam Wallace
SENIOR ASSOCIATE EDITOR
 Shannon Becker
TECHNICAL COPY EDITOR
 Carol Bower
CONTRIBUTING EDITOR
 Brian Millier
PROJECT EDITORS Ken Davidson
 David Tweed
MARKETING MANAGER Tori Zienka

ADVERTISING SALES REP.
Hugh Heinsohn

ADVERTISING COORDINATOR
Heather Childrey

COLUMNISTS
Jeff Bachiochi (From the Bench)
Stuart Ball (Start to Finish)
Joseph Corleto (The Magic Smoke Factory)
Bob Japenga (Embedded in Thin Slices)
Brian Millier (Picking Up Mixed Signals)
Colin O’Flynn (Embedded Systems Essentials)

@editor_cc
@circuitcellar circuitcellar circuit_cellar

COLUMNS

FEATURES

66 : PRODUCT NEWS

70 : TEST YOUR EQ

mailto:hugh@circuitcellar.com
https://circuitcellar.com/
https://linuxgizmos.com/
https://audioxpress.com/
https://audioxpress.com/page/Voice-Coil-Magazine
https://www.loudspeakerindustrysourcebook.com/
https://www.twitter.com/editor_CC
https://www.twitter.com/circuitcellar
https://www.facebook.com/circuitcellar
https://www.instagram.com/circuit_cellar

Building a Holographic Building a Holographic
Persistence-of-Vision DisplayPersistence-of-Vision Display

CIRCUIT CELLAR • NOVEMBER 2023 #4004
FE

AT
U

RE
S

H olograms are a common fixture
in science fiction, yet remain
somewhat of a unicorn for the
tech world. While building a “real”

hologram might be out of reach for today’s
technology, we can still strap a horn to a
metaphorical horse and make it feel pretty.
Persistence of Vision (POV) displays offer one
method by utilizing a psychological trick to
construct floating images out of light.

Persistence of Vision refers to the brain’s
tendency to perceive light for a brief period
after it stops entering the eye. Through clever
engineering, this effect can be exploited to
“paint” light onto thin air. A quickly rotating
series of LEDs appear to the brain as a full
circle, for example, and by changing the colors
emitted by the LEDs, we can create the illusion
of floating holographic images. These images
are ghostly, beautiful, and mesmerizing—
perfect for advertising, art installations, or
product presentations (Figure 1).

The unique design challenges associated
with creating a high-speed, fully wireless (both
for power and communication), and low-budget

POV display led us down many interesting
paths in a variety of engineering disciplines.
Our electronics harnessed the Raspberry PI
Pico microcontroller (MCU) to drive the display,
and we created custom printed circuit boards
(PCBs) to house the microcontroller, LEDs, and
accompanying electronics. The whole system
is powered inductively, removing the need for
any wires. Our software consists of embedded
C programming for high-speed operation of
the Pico, along with a Python TCP client to send
images to the display over Wi-Fi. Finally, our
mechanical design uses 3D-printed components
to enable safe, high-RPM operation.

ELECTRICAL OVERVIEW
In a system experiencing high

accelerations, PCBs are king. Made from high-
strength PTFE substrate, these boards can
stand many thousands of Gs, and soldered
connections are extremely resilient to the
characteristic forces of a POV display. They are
also lightweight and slightly flexible, making
them perfect for our use case. Figure 2 shows
the two PCBs we made for our design.

By
Michael Crum, Joseph Horwitz,
and Rabail Makhdoom

Paint Light Into Ethereal Floating Images Paint Light Into Ethereal Floating Images
Using a Raspberry Pi PicoUsing a Raspberry Pi Pico

Persistence of vision (POV) is the human brain’s ability to perceive light for
a brief period after it stops entering the eye. These three Cornell University
students exploited the POV phenomenon to create the illusion of holographic
images by changing the colors of a rapidly rotating series of LEDs.

FIGURE 1
Three examples of the holographic persistence-of-vision (POV)
display. (Note the Circuit Cellar logo in the center.)

circuitcellar.com 5
FEATU

RES

We call the first PCB “the arm,” shown lit
up in Figure 3. The arm holds 40 surface-
mounted APA102 LEDs, and provides standard
0.1-inch headers for interfacing with the LEDs.
We chose the APA102 LEDs because they use
a two-wire SPI protocol to communicate with
the control board. This allows communication
rates of up to 20MHz, more than fast
enough for our application. We previously
experimented with the popular WS2812B
LEDs, but these LEDs are capped at a 1kHz
refresh rate due to their single-wire protocol.
This would limit the radial resolution of our
display. We added an M3-sized hole on each
end of the arm, one to connect the arm to the
rest of the rotor, and one to attach weights to
balance the system.

The second PCB, shown in Figure 4 is
the control board. The control board holds
the Pico W and the power/logic electronics
to facilitate communication with the LEDs
and Hall effect sensor. The Pico W uses 3.3V
logic levels, while the APA102 LEDs expect 5V
logic. To remedy this disparity, we included
a 74AHCT125 Logic Level shifter. This shifter
converts our 3.3V signal to 5V, and is fast
enough to deal with our 20MHz SPI signals. A
47µF decoupling capacitor is placed across the

FIGURE 2
Our PCBs laid out in KiCad. Top:
"The arm," which holds 40 surface-
mounted APA102 LEDs. Bottom: The
control board, which holds the Pico W
and the power/logic electronics.

FIGURE 4
The control board PCB and
schematic. All PCBs were designed
using KiCad, an open-source ECAD
software.

FIGURE 3
"The arm" mounted and with LEDs
lit.

CIRCUIT CELLAR • NOVEMBER 2023 #4006
FE

AT
U

RE
S

power supply, which is especially important
when dealing with the rapidly changing power
requirements of the LEDs. We also added a
Schottky diode between the power rail and the
Pico’s VSYS pin. This diode allows the board
to simultaneously take power from screw
terminals and the Pico’s onboard USB without
damaging the Pico or the power supply.

To facilitate programming, we connected
a push button between the RUN pin and
ground. Pulling the RUN pin down causes the
Pico to enter boot-select mode and appear as
a programmable USB device. Finally, we wired
the Hall effect sensor to a GPIO pin of the Pico
with a 10kΩ pull-up resistor. Note that the
sensor is active low.

One of the key design choices for a POV
display is how to power the rotor. Because
it spins 360 degrees, wires cannot be safely
routed between the stationary stand and mobile
rotor. There are three traditional approaches
to this issue: a slip ring, an onboard battery,
and an inductive power supply.

Slip rings use brushes and contacts to create
connections that can “slip” past each other and
rotate. However, they are notoriously unreliable,
cause sparks under high load, wear over time,
and add friction. An onboard battery adds weight
to the rotor and is a potential safety concern at
high speed. Finally, there are inductive power
supplies. Due to the widespread adoption of
wireless charging technology, inductive coils are
readily available online. They are frictionless,
robust, and are by far the “slickest” solution,
if that matters (let’s be honest—it does). We
picked up a $25 system on Amazon complete
with a 5V level converter hardware, shown
installed on the arm in Figure 5.

Finally, we need to spin the rotor. We used
a spare motor found around the lab, but
most motors will do. Our motor used 18W
to achieve 1,800rpm(equivalent to 30fps), so
look for something in that range if you build
this project yourself. This motor is powered
by a motor speed controller built from a
second PI Pico and an HBridge. This allowed
us to control the motor speed precisely, but a
bench supply would also suffice.

MECHANICAL OVERVIEW
We started the design process by working

on the rotor. As mentioned in the previous
section, the PCBs, themselves, were included
in the mechanical construction of the rotor.
To supplement the PCBs, we needed to
create a superstructure that holds the PCBs
together and connects them to the motor
shaft. This structure also served to mount
the inductive coil. Along with the functional
requirements, we want to keep weight to a
minimum and make the design modular so
that design iterations are faster.

FIGURE 5
Inductive coil with 5V level converter
hardware mounted on the bottom of
"the arm." The coil powers the rotor,
which spins 360 degrees.

FIGURE 6
The fully assembled rotor.

circuitcellar.com 7
FEATU

RES

Our design is 3D printed with minimal
infill to reduce weight. It is only a couple
of millimeters thick, and is designed to
use the PCBs to supplement its strength.
Components are connected using M3 screws
that are threaded directly into the PLA. With
proper print settings, these connections are
remarkably strong, and more than enough for
the mostly lateral load of this application.

To interface with the motor, we created an
adapter that fits the motor shaft on one end
and supplies a 1” square hole pattern on the
other. We made this a separate component,
so that we could quickly iterate designs in
case the fit on the motor was too loose. The
final product is shown in Figure 6.

The next step was creating a stand to
house the motor and inductive coil. The
inductive coil has a specific range in which it
can operate safely, and we used the stand to
enforce this distance. The stand also allows
us to clamp the system to a table for testing.

The design is split into two parts to
reduce reprinting time. All parts are printed
in PLA with 20% infill, which was plenty
strong enough for the application. PLA is not
ferromagnetic, which means that it does not
interfere with the inductive power supply. The
motor mount is shown in Figure 7.

SOFTWARE OVERVIEW
Using just 40 independently addressable

LEDs, we were able to create the illusion of
12,000 pixels at over 30fps. The display is 26”
in diameter, and updates over Wi-Fi from our
custom Python client.

To display an image, we first use a Python
program running on a laptop to convert an
image into the display’s polar coordinate
system. This data gets sent over TCP to the
Pico W, where it is prepared to be displayed.
We created a browser-based GUI to streamline
the process, accepting images or GIFs and
handling the full transmission cycle.

The Pico measures its rotational speed
using a Hall effect sensor and a magnet
mounted to the stand. With this information,
it displays the pixels for the “slice” of the
image corresponding to its current position
in the rotation.

The MCU code executes two processes,
each running on its own core. One process
handles TCP exchanges and writes the image
array with new pixel data. The other process
reads the image array and updates the LEDs
to maintain a complete image. By using
both cores, we can concurrently receive TCP
messages and control the LED strip, allowing
for seamless operation.

Python Code: Our Python code creates
an HTTP server that allows users to submit
images to be shown on the display. The front

end (shown in Figure 8) uses simple Javascript
to POST the user’s image to the server, where
the server downloads and caches it.

Raster images are typically displayed on
rectangular screens, utilizing a rectangular
array of pixels. POV displays are unique in the
radial arrangement of their pixels, meaning
we must pre-process the images from
the canonical rectangular system into the
display’s native polar coordinates.

Our approach is virtually overlaying
the location of the display’s pixels over the
rectangular image. We chose to center the
circle and have its diameter be the same as
the smallest dimension of the source image.
This focuses on the central parts of the image
and maximizes the amount of the display
utilized. Any pixels outside the circle defined
by this radius are ignored. For each of the
pixels on the display, the closest pixel of the
rectangular image is selected, and that color
is used for the radial representation.

When processing the image, we must
decide on a resolution. Because the number
of LEDs on the arm is physically determined,

FIGURE 7
The final motor mount.

FIGURE 8
The front end for the Python code. It uses simple Javascript to POST the user's image to the server, where
the server downloads and caches it.

CIRCUIT CELLAR • NOVEMBER 2023 #4008
FE

AT
U

RE
S

we can only control the angular resolution.
This is the number of times LEDs must change
color while traveling in one rotation. While
higher angular resolution results in a clearer
image, it also strains the processing time of
the Pico and the refresh rate of the LEDs. Our
experimentation showed diminishing returns
with >300 LED changes per rotation, so we
stuck with that resolution for our final results.

The pixels are then pushed onto an array
that stores the polar image. The array stores
a pixel as (THETA, R, COLOR) rather than the
traditional (X, Y, COLOR). Theta represents
which angle of the arm contains the pixel, R
represents the distance from the center of
the arm in terms of the number of LEDs, and
COLOR is an RGB triple.

Figure 9 shows what the processed images

Sample the image at each point that an LED will update at
We calculate this point in polar space, convert it to rectangular, then sample the image at
that point
The results are stored in rad_img, which is a polar representation. Essentially (theta, r)
for t in range(DIVISIONS_PER_ROTATION):
 for l in range(NUM_LEDS):
 # What angle are we looking at (in radians)
 theta = t * ((2 * numpy.pi) / DIVISIONS_PER_ROTATION) + offset
 # How far out are we (from 0 to 1)
 r = l / NUM_LEDS

 x_raw = numpy.cos(theta) * r
 y_raw = numpy.sin(theta) * r

 # Get the rectangular coord for the current polar coord, centered on the image and
going to the edges
 x = numpy.interp(
 x_raw, [-1, 1], [(width / 2) - (min_dim / 2), (width / 2) + (min_dim / 2)])
 y = numpy.interp(
 y_raw, [-1, 1], [(height / 2) - (min_dim / 2), (height / 2) + (min_dim / 2)])

 x = int(x)
 y = int(y)

 assert x < width and x > 0
 assert y < height and y > 0

 rad_img[t][l] = img_array_np[x][y]

LISTING 1
The Python code for sampling an image in polar coordinates.

FIGURE 9
A test image produced at angular resolutions of 60, 90, and 180 LED changes per rotation. Angular resolution is the number of times LEDs must change color while traveling
in one rotation.

circuitcellar.com 9
FEATU

RES

look like at various radial resolutions,
and Listing 1 shows the Python code
for our implementation. We were able to
run up to 300 LED changes per rotation,
but reasonable images can be generated
with 180 changes or less.

Once the image has been
processed, we must send it to the Pico.
This is handled using a TCP connection
created by the Socket Python module.
A laptop running the Python code
presents itself as a TCP server, to
which the Pico automatically connects.
Once the connection is established,
we can send our image as a stream of
bytes to the Pico.

Pico Code: The Raspberry Pi
Foundation provides an excellent SDK
for programming the Pico, including all
the build tools necessary for deploying
code, and a collection of drivers for the
various peripherals of the RP2040. Our
work makes extensive use of this SDK,
along with the popular Protothreads
threading library for concurrent
programming [1].

The RP2040 included on the Pico is
dual-core processor, which is perfect for
our use case. The display can be broken
down into two high-level components:
networking (talking to the laptop over
Wi-Fi); and control (controlling the
LEDs and ensuring timing consistency).
Running each component on a separate
core separates the interrupt-heavy and
asynchronous requirements of network
programming from the timing critical

and processor-greedy requirements of
peripheral control. Additionally, because
the control logic only reads data from
shared memory (never writing) there is
no concern over race conditions.

Core zero is responsible for the
networking code, and starts life
by initializing its peripherals. The
networking on the Pico W is handled by
an onboard CYW43439 chip, which has
a handy driver packaged into the Pico
SDK. After initializing the RP2040’s
GPIO pins, the CYW43439 driver is
initialized and used to connect to a
provided Wi-Fi SSID. We then register
our custom interrupt handlers to
manage TCP-related messages
received by the Wi-Fi chip.

When the interrupt signifying a TCP
transmission is triggered, data is fed
to the interrupt as a packet of bytes
(Listing 2). While TCP does guarantee
the delivery of data, it does not
guarantee how many packets the data
will be formatted into when sent. This
makes it the developer’s responsibility
to ensure that all data is received, even
if it is broken into many packets. This
problem can be handled by including a
header with the message length, but
our packet size is always the same
(whatever is required by the resolution
of the image) and can be agreed upon
before the code is flashed to the Pico.

Because the size of an image is
known, the Pico continues listening for
packets until enough data has been

static int dump_bytes(const uint8_t *bptr, uint32_t len)
{
 unsigned int led_i;
 unsigned int rot_i;
 unsigned char rgb_i;
 uint8_t x;

 for (unsigned int i = 0; i < len; i++)
 {
 x = bptr[i];
 rgb_i = arr_i % 3;
 led_i = (arr_i / 3) % LED_NUM;
 rot_i = (arr_i / (LED_NUM * 3)) % ROTATIONS;
 led_array[rot_i][led_i][rgb_i] = x;
 arr_i++;
 }
 return rot_i + 1;
}

LISTING 2
The interrupt handler for TCP packets.

Siborg Systems Inc.

Siborg Systems Inc.
24 Combermere Crescent, Waterloo, Ontario, Canada N2L 5B1
Phone: 1-519-888-9906 Fax: 1-519-725-9522 www.Siborg.com

www.LCR-Reader.com

Budget LCR Meter

LCR/ESR measurements
1 oz. weight

Automatic range selection
One button navigation

OLED display

Basic Accuracy: 0.5%

Test Frequency:
100 Hz, 1, 10 kHz

Test Signal Level:
0.5 +/- 5% Vrms

LCR/ESR Oscilloscope

Signal Generator

Frequency

AC/DC CurrentAC/DC Voltage

®LCR-Reader-MPA
All-in-One Multimeter

Optional Bluetooth model for data logging and
quick Pass/Fail component assessment

Basic Accuracy: 0.1%

Test Frequency:
100 Hz to 100 kHz

Test Signal Level:
0.1, 0.5, 1.0 Vrms

M
ad

e in
 Canada

Fabriqué au Canada

L-C-R, AC/DC Voltage/Current
ESR, LED/Diode/Continuity Test
Frequency, Period, Duty Cycle
Oscilloscope
Signal Generator
Super Cap Testing

http://www.Siborg.com
http://www.LCR-Reader.com

CIRCUIT CELLAR • NOVEMBER 2023 #40010
FE

AT
U

RE
S

received. It then rebuilds the 3D polar array
that represents the image, identical to the
array sent from the laptop’s Python client.
This array is stored in memory accessible to
both cores, making it available to core one’s
display logic.

Core one tackles the issue of controlling
the LEDs. The core first initializes the relevant
GPIO pins for SPI communication, then
outputs a test pattern to the LEDs as a visual
indicator that initialization was successful.
It also registers an interrupt handler for the
rising edge of a Hall effect sensor, which is
explained below.

Using the image information supplied
by core zero, the image is almost ready
to be displayed. We still need one more
piece of information: the current position
of the arm. To display a steady image, we
need to know what “slice” of the image
is currently being displayed. Instead of
trying to measure the position of the arm
directly, we use some mathematical trickery
to form an estimate. By using a Hall effect
sensor to determine when the arm passes
a magnet mounted to the base, we get a
sub-millisecond measurement of the period
of the arm’s rotation, and stable a zero
point in the viewer’s frame of reference.
Given that the arm is rotating at a constant
speed, the amount of time that each “slice”
of the image should be displayed is the
period divided by the number of pixels
per rotation. This is easy to keep track of
using an MCU, and we accomplished it using
the yield functionality of the Protothreads
library [1]. We determined the yield time
using the following equation:

yieldtime = (period of rotation/changes per
rotations) - LED update time

The Hall effect sensor we chose is active
low and pulls a GPIO pin to ground whenever
the south pole of a magnet gets close. We
set up a falling edge interrupt on the pin,
triggering whenever the sensor moves past
the stationary magnet on the motor mount.
When the interrupt is triggered, the period
of rotation is calculated by subtracting the
last activation from the current time. We
also check that the period is a reasonable
value (>10,000µs), which helps us reject
any high-frequency false positives. We also
indicate that we have hit our zero point by
setting the relevant flag.

Finally, we can update the LEDs! We
chose APA102 LEDs because they use the
high-speed SPI protocol to communicate.
A common pitfall of POV display design is
attempting to use the ubiquitous WS2812b
LEDs (also known as Adafruit NeoPixels).

FIGURE 10
Six different holographic images shown on the display.

circuitcellar.com 11
FEATU

RES

These LEDs use a single wire control protocol
and don’t have the required bandwidth for
high speed refreshes. The SPI interface has
the additional benefit of allowing us to use the
Pico’s SPI peripheral to simplify the driver.
The LEDs expect packets that are broken into
“frames” of 32 bits. Each message begins
with a start frame of 32 0's and ends with an
end frame of 32 1’s. In between, each frame
represents the data for a single LED in the
strip. A LED frame starts with 111, then is
followed by 5 bits representing the brightness
of the LED. This is followed by 8 bits for each
of blue, green, and red, giving 256 values for
each.

The LEDs are wired in series, with the SCK
and MOSI lines of the previous LED leading
into the next. When an LED receives a packet,
it updates its state, strips the first LED frame
off the packet, and then shifts the new packet
out of its output SCK and MOSI lines. By doing
so the entire strip can be updated from a
single message sent to the first LED.

RESULTS OF THE DESIGN
Various holographic images on the POV

display are shown in Figure 10. We can
quantify the performance of our display in
terms of several metrics:

1. Resolution: Rotational displays operate
slightly differently than traditional grid-based
displays. Each “pixel” is actually an arc, and
its position is defined in terms of radius and
angle rather than x and y. For a POV display,
the resolution on the radius is the number of
LEDs on the arm, so 40 in our case. The angular
resolution depends on how many times the
LEDs update per rotation. We experimented
and determined that 300 updates produced
vivid images without overwhelming our MCU.
Multiplying these quantities gives 12,000
pixels, which is much higher than comparable
DIY systems.

2. Size: POV displays become exponentially
more complicated as they grow larger. Large
radius results in higher acceleration, more
LEDs required for equivalent pixel density, and
more power required. Many POV projects are
under 6” in diameter for this reason. Because
our goal was to create a visually impressive
product, we decided to aim for around the
size of a large poster. This resulted in a 26”
diameter display. This posed many technical
challenges, but the result is absolutely
stunning.

3. Image Stability: Due to the high speed
of the system and the noisy signals generated
by the Hall effect sensor, it can be difficult
to determine the exact rotational frequency.
This can cause the image to jitter or process
around the display. Our display dealt with
these issues remarkably, with almost no

visible jitter. Any noise was constrained to
within one angular pixel, or under 2 degrees.

4. Usability: Our design emphasizes
usability and consistency. Good build quality
ensures that repeated use doesn’t cause
incremental damage, decreasing the life
span. The system is powered by a single wall
outlet, so no specialized hardware is required.
It is resilient to fluctuations in motor speed,
so replacement or modification is easy. The
custom Python interface allows for use of
the display with any image you choose,
and updates can be sent over Wi-Fi without
slowing down the display.

All the code and design files for this project
are available on GitHub [2]. See Circuit Cellar’s
Article Materials and Resources webpage.

FUTURE WORK AND
IMPROVEMENTS

One notable issue with our display is the
spacing between the pixels. Because of the
physical requirements for soldering the arm,
there are small gaps between the LEDs. This
causes circular interruptions in the image,
and could be remedied by using two staggered
rows of LEDs.

We also hope to improve the interface
for transmitting images and video. It would
be interesting to write a display driver that
allows the display to mirror a computer
screen. This would make the display interface
even more intuitive.

SPECIAL THANKS
Special thanks to Cornell’s Professor

Hunter Adams and Professor Bruce Land for
all of their help.

Additional materials from the author are available at:
www.circuitcellar.com/article-materials
References [1] to [2] as marked in the article can be found there.

RESOURCES

Raspberry Pi | www.raspberrypi.com

ABOUT THE AUTHORS
Michael Crum (mmc323@cornell.edu) is an undergraduate Junior studying
Computer Science at Cornell University. He is primarily interested in
embedded systems and their applications in robotics. See more of his work
at https://michael-crum.com/.
Joseph Horwitz (jah569@cornell.edu) is an undergraduate Senior in Electrical
and Computer Engineering at Cornell University. He is also interested in
embedded systems and firmware development.
Rabail Makhdoom(rm857@cornell.edu) is a Master of Engineering (M.Eng)
student in Electrical and Computer Engineering at Cornell University. She is
primarily interested in analog IC design, power electronics, and robotics.

mailto:mmc323@cornell.edu
https://michael-crum.com/
mailto:jah569@cornell.edu
mailto:rm857@cornell.edu
http://www.circuitcellar.com/article-materials
http://www.raspberrypi.com

Backend Web Development Backend Web Development
for MCU Clientsfor MCU Clients

CIRCUIT CELLAR • NOVEMBER 2023 #40012
FE

AT
U

RE
S

I n Part 1 of this article series I discussed
basic concepts regarding full-stack
web development and backend/front-
end web development. I also discussed

a basic backend workflow for working with
microcontroller (MCU)-based web clients. I
explained how to set up a basic Linux web
server with a database by installing the LAMP
(Linux, Apache, MySQL/MariaDB and PHP)
backend technology stack on a Raspberry Pi
board.

I presented an Espressif ESP8266 MCU-
based data logger with a Bosch Sensortec
BME688 Environmental Sensor, as an example
of an MCU-based web client. This data logger
periodically sends sensor readings via Hyper
Text Transfer Protocol (HTTP) POST requests
to the web server. I explained as well a basic
PHP script that runs on the server to attend the
POST requests from the MCU web client. The
script retrieves the sensor data that comes
in the HTTP request’s body and prepares a
String Query Language (SQL) query that can
be used store the values in a database.

If you are not familiar with the concepts
described above, please refer to Part 1 of this
article series (“Backend Web Development for
MCU Clients,” Circuit Cellar 399, October,
2023) so you can follow the topics presented
here [1]. Here, in Part 2 of this article series, I
discuss the creation of a MariaDB database on
the server to store the remote sensor readings.
I explain basic SQL queries to perform

diverse operations with the database, and I
also discuss a second PHP script to query the
database to retrieve previously stored data.

CREATING THE DATABASE
MariaDB is a SQL-based relational

database, so to be able to interact with it,
you must have a basic understanding of SQL.
What is SQL? SQL is a standard language for
storing, manipulating and retrieving data
from databases. With SQL you execute queries
against the database to store and retrieve
data, update and delete records, create new
databases and new tables, create new users,
set access permissions, and so on. The SQL
language is intuitive and easy to understand.
Once you get acquainted with the most simple
queries, using a database server becomes a
straightforward activity.

Listing 1 shows the procedure to create
a database, a table, and a user with all the
necessary access privileges. From Part 1, you
should have already set up your Linux-based
web server with a MariaDB/MySQL database.
On your Linux server, open a terminal window
and run the command from line 5 to access
MariaDB. Note that you can execute “sudo
mysql” instead, to the same end. Next, run
the SQL query in line 8 to list all currently
available databases. From now on, remember
to end all SQL queries with a semicolon (“;”).
MariaDB won’t execute the query until you
type the semicolon.

By
Raul Alvarez-Torrico

Part 2: Querying a Database in PHPPart 2: Querying a Database in PHP

Proficiency with servers, HTTP, and backend technologies are
valuable skills for the embedded systems professional. In Part 2
of this three-part article series, Raul steps us through creating a
MariaDB database, how to use SQL queries to store data in the
database with a slightly modified PHP script, and how to use a
second PHP script to extract data from the database and send it
back to a web client.

circuitcellar.com 13
FEATU

RES

Run line 11 to create a new database named “logger_db.”
You could use any other name for your database, but it is
advisable to use the same names described here, to follow
all procedures avoiding potential confusion. Run line 14 to
select the newly created database. From now on, all issued
SQL queries will apply to the selected database.

Now, we need to create a table in the database to store the
data. To do so, in the command line write and run the query
shown in lines 17-23. The indentation tabs are optional. To
break the query in many lines, as it is shown in the listing, just
hit <Enter> to break each line. Remember that SQL queries
only execute when they are ended with a semicolon; thus,

LISTING 1
SQL queries to create a database, a table, and a user.

1 # Creating a MariaDB/MySQL Database, Table and User
2
3 ## Create a Database and a Table
4 ### Start MariaDB:
5 sudo mariadb
6
7 ### List all available databases:
8 SHOW databases;
9
10 ### Create a database named ‘logger_db’:
11 CREATE DATABASE logger_db;
12
13 ### Select the created database:
14 USE logger_db;
15
16 ### In the database, create a table named ‘sensors’:
17 CREATE TABLE sensors (
18 unix_t INT(11),
19 gas_res DECIMAL(8,2),
20 pressure DECIMAL(8,2),
21 temperature DECIMAL(5,2),
22 rel_hum DECIMAL(5,2),
23 id INT UNSIGNED NOT NULL AUTO_INCREMENT KEY);
24
25 ### As a test, insert manually a row in the table
26 INSERT INTO sensors (unix_t, gas_res, pressure, temperature, rel_hum)
27 VALUES(‘1688160823’, ‘50178.01’, ‘749.45’, ‘25.74’, ‘45.59’);
28
29 ### Show all rows in the table
30 SELECT * FROM sensors;
31
32 ### Empty the table (delete all rows without erasing the table).
33 TRUNCATE TABLE sensors;
34
35 ## Create a New MariaDB User. With the user name ‘user1’ and password ‘password1’:
36 CREATE USER ‘user1’@localhost IDENTIFIED BY ‘password1’;
37
38 ### Check user status:
39 SELECT User FROM mysql.user;
40
41 ### Grant Privileges to the new MariaDB User
42 GRANT ALL PRIVILEGES ON logger_db.sensors TO ‘user1’@localhost IDENTIFIED BY
‘password1’;
43
44 ### Refresh privileges:
45 FLUSH PRIVILEGES;
46
47 ### Verify permissions for the new user:
48 SHOW GRANTS FOR ‘user1’@localhost;
49
50 ### Remove MariaDB User Account:
51 DROP USER ‘user1’@localhost;
52
53 ### Exit MariaDB:
54 exit

CIRCUIT CELLAR • NOVEMBER 2023 #40014
FE

AT
U

RE
S

this query will execute only after you type the
semicolon in the last line and hit <Enter>.

What does this SQL query do? It creates a
new table named “sensors” in the currently
selected database (“logger_db”). This table has

six columns: “unix_t,” “gas_res,” “pressure,”
“temperature,” “rel_hum,” and “id.” The first
column (“unix_t”) is of type INT (integer) with
11 digits. The second column (“gas_res”) is of
type DECIMAL with a precision of 8 significant
digits and a scale of 2 decimal digits. This
means that this column can store a maximum
value up to 999999.99. The same logic applies
to the next columns, except for the last one
(“id”). The last column (line 23) serves as the
primary key that will help to uniquely identify
each data row in the table. This column is of
type INT UNSIGNED. It can never be null, and
it auto-increments with each new row that’s
inserted in the table.

After the database table is created, run the
SQL query from lines 26-27 to insert your first
data row manually in the newly created table.
The first parenthesis in this query contains
the table column names, and the second
parenthesis contains the corresponding values
to be inserted in each column. Repeat if you
want the same query many times, changing
values to store additional rows. Next, run line
30 to display all data rows already stored in
the table. The asterisk (*) in this last query

LISTING 2
Receiving CSV data in the server and storing them in the database.

1 <?php
2 // Get the body (CSV string) from the incoming request
3 $csv = file_get_contents(‘php://input’);
4
5 $data_array = str_getcsv($csv); //Convert CSV to array
6
7 if($data_array != null) {
8 $unix_t = time(); //Read unix time (GMT) from server
9
10 // Extract received remote values from array
11 $gas_res = $data_array[0];
12 $pressure = $data_array[1];
13 $temperature = $data_array[2];
14 $rel_hum = $data_array[3];
15
16 // Build SQL query string for the database
17 $query = “INSERT INTO sensors(unix_t, gas_res, pressure, temperature, rel_hum)
VALUES” . “(‘$unix_t’, ‘$gas_res’, ‘$pressure’, ‘$temperature’, ‘$rel_hum’)”;
18
19 // Connect to the database
20 require_once ‘login.php’; // Include login information
21 $conn = new mysqli($server, $user, $password, $database);
22 if ($conn->connect_error) die($conn->connect_error);
23
24 // Query the database
25 $result = $conn->query($query);
26
27 // If the query was unsuccessful...
28 if (!$result) echo “Query error: $query\n” . $conn->error . “\n”;
29 else echo “Data inserted into DB!\n”; // Send success message
30 }
31 ?>

FIGURE 1
Listing all data from the "sensors" table.

php://input%E2%80%99

circuitcellar.com 15
FEATU

RES

simply means “all.” So, the query can be
interpreted as follows: “Select and display
all available rows from table sensors.” After
running this query, in the terminal you will
see listed all rows previously inserted in the
table (Figure 1). If you want to get a fresh
start with your database table, purge all
data from the table by running line 33. The
“TRUNCATE” query will empty the database
table without erasing its structure. Now if you
run line 30 again, you will get an empty table.

Next, we need to create a database user
with all the necessary privileges to perform
operations in the table. We accomplish this
with the query from line 36. Before running
this query, replace “user1” with your own user
name, and “password1” with its corresponding
password. After running line 36, run line
39 to get all available users in the MariaDB
database. You should see in that listing the

user you just created. Going forward, run
line 42 to grant all privileges that will allow
the new user full control over the “sensors”
table in the “logger_db” database. Here too,
you must replace your own user name and
password.

Run line 45 to reload the granted
privileges, and run line 48 to verify that the
user has received them. If for some reason
you need to erase a user, run line 51 to do
so. However, we need to keep the user we
just created to access the database in the
following examples. Finally, type “exit” to
exit MariaDB (line 54). If you want to delve
deeper into SQL, a suggested online tutorial
[2] is available on the Circuit Cellar Article
Materials and Resources webpage.

If you are new to the Linux terminal,
interacting with a database from the command
line can be a bit awkward at first, but it

1 <?php // login.php
2 $host = ‘localhost’; //Server host name or IP addres
3 $database = ‘logger_db’; // Database name
4 $user = ‘user1’; // Change for your own user name
5 $password = ‘password1’; //Change for your own password
6 ?>

LISTING 3
PHP script containing database login
information.

www.BusBoard.com/CC

For more details on
BusBoard breadboards and

prototyping PCBs visit:

Experience the
BREADBOARD DIFFERENCE

Available for purchase at your trusted retailer

Enjoy prototyping with high reliability precision breadboard contacts
and avoid the frustration of poor breadboard connections. Usable
with square-post headers and a range of wire sizes down to 26AWG.

BB170
BB300BB630

BB400

BB1460

BB830

BB1660

http://www.BusBoard.com/CC

CIRCUIT CELLAR • NOVEMBER 2023 #40016
FE

AT
U

RE
S

pays off in the long run. When working with
servers, sometimes the only way to access
them is by using a remote SSH connection
from a terminal window. There is, however,
some Graphical User Interface (GUI) software
to interact with databases. Arguably the most
popular for MySQL/MariaDB databases is
“phpMyAdmin” [3] (written in PHP). It allows
you to interact with MariaDB/MySQL from a
web browser window.

STORING DATA IN THE DATABASE
Now that we have a working database in

our server, let’s store data in it using PHP. How
we do this? Listing 2 shows the same PHP code
I discussed in Part 1 of this article series [1],
but this new version includes code lines 20-
29. These additional lines open a connection
to the database, insert the received data in
the database table, and check for possible
errors. Let’s see how this works.

Line 20 acts in similar way to the
“#include” C language preprocessor directive.
It includes the “login.php” script, which
defines four variables containing database
login information, as shown in Listing 3.
“$host” contains the host name or IP address
of the database server. This will be usually
“localhost” if the web server (where the PHP
script is running) and the database server,
both are running on the same computer. This
is our case, and it generally is for most small
to medium size web applications. “$database”
contains the name of the database you want
to access (“logger_db”), which is the database
we created previously (see line 11 in Listing 1).
“$user” and “$password” contain, respectively,
the user name and password for the database
user with the required access privileges. In this
script, change the user name and password

you chose when creating your database user
(see lines 36, 42 from Listing 1).

Now let’s go back to Listing 2. Line 21
opens a connection to the database using the
login credentials from the “login.php” script.
Next, line 22 checks for any errors from
the previous step. If an error has occurred,
the die() function will terminate the script
execution and display an error message.
If the connection was opened successfully,
line 25 will submit to the database the SQL
query prepared in line 17. If the query is
unsuccessful, line 28 sends back to the web
client an error message containing the query
string (“$query”) and the connection error
(“$conn->error”). Otherwise, a success
message is sent instead.

To test the backend so far, follow these
steps: First, in your web server’s root
directory, create a subdirectory called
“backend” and copy into it the “receive_csv.
php” and “login.php” files. We will be putting
all server files inside this subdirectory. The
root directory for Raspberry Pi servers or any
other Debian/Ubuntu-based servers will be
typically: “/var/www/html/”. So, the full path
to our web application will be: “/var/www/
html/backend/”. Next, connect the ESP8266
board to your PC, and upload the new version
of the “esp8266_http_post_client.ino” Arduino
sketch provided for Part 2 of this article
series. This file and all other source code files
are available on the Circuit Cellar Article
Materials and Resources webpage.

In the first version of this Arduino sketch
(given in Part 1) [1], I used the “ESP8266WiFi”
library to manually build and send the
HTTP POST requests to the server. By doing
it that way, it was clearer how the HTTP
requests are structured, protocol-wise. In

FIGURE 2
Server response to a POST request.

circuitcellar.com 17
FEATU

RES

this second version, however, I’m using the
“ESP8266HTTPClient” library that makes the
sending and receiving of HTTP requests more
straightforward, because of its additional
abstraction layer. By comparing the two
versions, you will see that the second one is
more compact. Besides, in this new version,
now we are reading real values from the
BME688 sensor, instead of using random
values to simulate sensor readings.

Remember to change your Wi-Fi credentials
and your server’s IP address before flashing the
code. After flashing the code, open the Arduino
IDE’s serial monitor to see debug information.
Once the board is connected to your Wi-Fi
router, it will automatically start to send data
periodically to the web server. Responses
from the server will be printed on the serial
monitor (Figure 2). Now, access MariaDB from
the command line on your server by opening

1 <?php
2 // If ‘from’ and ‘to’ dates arrived as key:value pairs
3 if (isset($_GET[‘from_date’]) && isset($_GET[‘to_date’])) {
4 $from_date = $_GET[“from_date”]; //Read date into local var.
5 $to_date = $_GET[“to_date”]; //Read date into local var.
6
7 require_once ‘login.php’; // Include DB login info
8 $conn = new mysqli($server, $user, $password, $database);
9
10 if ($conn->connect_error)
11 die(“Connection failed: “ . $conn->connect_error);
12
13 //Add begin/end hours to dates. Ex: “2023-08-08 00:00:00”
14 $from_date_hour = strtotime($from_date . “ 00:00:00”);
15 $to_date_hour = strtotime($to_date . “ 23:59:59”);
16
17 // Fetch data and send it back as CSV
18 Fetch_Db_Csv($conn, $from_date_hour, $to_date_hour);
19 $conn->close(); // Close DB connection
20 }
21
22 // Fetch data and send them back as CSV
23 function Fetch_Db_Csv($conn, $from_date_hour, $to_date_hour) {
24 // Build the SQL query
25 $query = “SELECT * FROM sensors WHERE unix_t BETWEEN ‘$from_date_hour’ AND ‘$to_
date_hour’ ORDER BY unix_t”;
26
27 $result = $conn->query($query); // Query the DB
28
29 // If there’s at least one row, build the CSV string
30 if ($result->num_rows > 0) {
31 echo “unix_t,gas_res,pressure,temperature,rel_hum\n”;
32 $csv_row = “”;
33 // Read data from row into local variables
34 while($row = $result->fetch_assoc()) {
35 $unix_t = $row[“unix_t”];
36 $gas_res = $row[“gas_res”];
37 $pressure = $row[“pressure”];
38 $temperature = $row[“temperature”];
39 $rel_hum = $row[“rel_hum”];
40 // Build CSV string
41 $csv_row = “’$unix_t’,’$gas_res’,’$pressure’,’ $temperature’,’$rel_hum’\n”;
42 echo $csv_row; // Send CSV string row to HTTP client
43 }
44 } else { // No results that match the fetch criteria...
45 echo “0 results”; // Send feedback to web client
46 }
47 }
48 ?>

LISTING 4
Fetching data from the database and sending them back to web clients.

CIRCUIT CELLAR • NOVEMBER 2023 #40018
FE

AT
U

RE
S

a terminal window and executing “sudo
mariadb”. Run the query, “USE logger_db;”
and then “SELECT * from sensors;” to display
the contents of the “sensors” database table.
You should see listed all data received from
the ESP8266 data logger that are stored in the
database, similarly to what we saw previously
in Figure 1.

FETCHING DATA FROM THE
DATABASE

Now that we know how to store sensor
data, let’s see how to retrieve data from the
database and put them in a suitable transfer
format for sending them back to the web
client. We will consider basically two types of
web clients requesting data from our server:
a regular web browser, and an embedded,
MCU-based web client, such as our ESP8266-
based data logger. For web browsers, XML
and JSON formats are generally preferred.
For MCU-based clients, however, CSV will
be generally more suitable. JSON can also
be used for MCU-based clients, but it is less
efficient than CSV in terms of memory usage.

In Part 1 of this article series [1], I
described CSV as a lightweight format that is
appropriate to use with low-memory devices
such as MCUs. Listing 4 shows the PHP script
that fetches data from the database, formats
them as a CSV string, and sends them back

to the requesting web client. Let’s see how it
works.

Line 3 verifies that the “from_date” and
“to_date” key:value pairs arrived in the
incoming HTTP GET request. Only if both keys
are set, the script will query the database on
the client’s behalf. Lines 4-5 store both dates
into local variables.

Line 7 includes the “login.php” script with
the database login information, and line 8
opens a connection to the database. Line 10
checks for any connection error; if there’s any,
it aborts the script execution (line 11). Line
14 concatenates the “ 00:00:00” string to the
“from_date”, because to search the database
we need to specify the begin-hour along with
the begin-date. The result will be a string like
this: “2023-08-08 00:00:00”. Similarly, with
line 15, we specify “ 23:59:59” as the end-hour
for the “to_date”. This includes in the search
all available readings until the last second of
that day. Next, line 18 calls the Fetch_Db_
Csv() function defined in lines 23-47. This
function queries the database, prepares the
retrieved data as a CSV string, and sends
them back to the HTTP client. Finally, line 19
closes the database connection.

Let’s look at how the Fetch_Db_Csv()
function works. The function receives as
input parameters the database connection,
the “from-date-hour” and the “to-date-hour”
(see line 23). In line 25, it builds the SQL
query that will be used to fetch data from the
database. The “*” in that query means “all,”
“sensors” is the table name, and “unix_t” is
the column that stores the Unix time for each
row in the table (Figure 1). So, in plain English,
the full query can be read as follows: Select
all rows from the “sensors” table where the
Unix time column has a value between “from_
date_hour” and “to_date_hour”. Arrange the
results by Unix time in ascending order.

Line 27 submits the query to the database,
and line 30 checks if there’s at least one row as
a result. If so, line 31 sends as a first text row
in the CSV file the column names. Lines 34-
43 iterate over all available rows, extracting
column values and storing them into local
variables. For each table row, it then builds a
CSV row containing sensor readings (line 41),
and sends it back to the HTTP client (line 42).
After processing and “echoing” all rows, the
client will get a CSV file with all the sensor
readings that match the request criteria.

Let’s test the “fetch_csv.php” script
from a web browser. First, download the
aforementioned PHP script from the Circuit
Cellar Article Materials and Resources
webpage, and copy it to the “/var/www/
html/backend/” folder in your server. Next,
in the URI below, replace the IP address for
your web server’s. Replace as well the start

FIGURE 3
Fetching the CSV file using a web
browser.

FIGURE 4
Fetching the CSV file from the command line.

circuitcellar.com 19
FEATU

RES

and end dates with dates you know for sure
you have sensor readings stored in your
database:

ht tp://192.168.0.15/backend/ fetch_csv.
php?from_date=2023-08-08&to_date=2023-
08-08

Open the URI in a web browser. An HTTP
GET request will be sent automatically to the
web server, which, in response, will send back
the CSV file containing the sensor readings,
as shown in Figure 3. Don’t mind the rows
don’t show broken down properly; that’s just
because the browser doesn’t recognize the
“\n” character as a new line.

To get regular dates from the Unix
timestamps in your database, convert them

using an online Unix time converter. For
instance, I took the first Unix time from
Figure 1 (“1691526851”), and after converting
it, I got “Tue Aug 08 2023 16:34:11 GMT-
0400.” So, I used “2023-08-08” as start and
end dates in the URI example above. You can
use, however, different start and end dates;
the server will send whatever data it finds in
that time period.

You can also test the backend from a
terminal window using the “cURL” library
on a Linux machine. After changing relevant
details, run the following command to get the
CSV file:

curl “http://192.168.0.15/backend/fetch_csv.
php?from_date=2023-08-08&to_date=2023-
08-08”

LISTING 5
Code for the esp8266 HTTP GET client.

1 #define SSID “MyWiFi”
2 #define PASSWORD “MyCatKnowsAssembly”
3 #define PHP_SCRIPT_URI “http://192.168.0.15/backend/fetch_csv.php”
4 String get_query_string; // ‘GET’ query string with key value pairs
5
6 void setup() { // Regular Wi-Fi initialization... }
7
8 void loop() {
9 static long prev_millis; // Stores time of the last publication
10 long elapsed_time = millis() - prev_millis;
11 if (elapsed_time >= READ_INTERVAL) { // Check time interval
12 String from_date = “2023-08-08”;
13 String to_date = “2023-08-08”;
14 get_query_string = “?from_date=” + from_date + “&to_date=” + to_date;
15 Send_Get_Request(); // Send the HTTP request
16 prev_millis = millis(); // Take current time
17 }
18 }
19
20 void Send_Get_Request() {
21 if ((WiFi.status() == WL_CONNECTED)) {
22 WiFiClient client;
23 HTTPClient http;
24
25 if (http.begin(client, PHP_SCRIPT_URI + get_query_string)) {
26 int httpCode = http.GET();
27 if (httpCode > 0) {
28 Serial.printf(“GET code: %d\n”, httpCode);
29 if (httpCode == HTTP_CODE_OK) {
30 String payload = http.getString(); Serial.println(payload);
31 // Parse CSV data here...
32 }
33 } else { Serial.printf(“GET error: %s\n”, http.errorToString(httpCode).c_str());}
34 http.end();
35 } else { Serial.printf(“Unable to connect\n”); }
36 }
37 }

http://192.168.0.15/backend/
http://192.168.0.15/backend/fetch_csv
http://192.168.0.15/backend/fetch_csv.php%E2%80%9D

CIRCUIT CELLAR • NOVEMBER 2023 #40020
FE

AT
U

RE
S

In a Windows 10/11 machine, open the
Windows PowerShell and run:

Invoke-WebRequest -URI “http://192.168.0.15/
backend/fetch_csv.php?from_date=2023-08-
08&to_date=2023-08-08” -UseBasicParsing

Figure 4 shows the output from the
PowerShell on Windows 10. cURL on Linux
will show something similar. If you are not
familiar with these command line tools, don’t
worry. Just use the web browser instead,
as explained above. After receiving the CSV
file, the HTTP client needs to parse it to get
the individual values. There are available
CSV parser libraries for virtually every
programming language.

FETCHING DATA FROM THE MCU
Now let’s see how to fetch the same CSV

data using the ESP8266 MCU. To achieve this,
we have to send practically the same HTTP
GET request sent above, using the command
line tools or the web browser. Listing 5 shows

an excerpt of the “esp8266_http_get_client.
ino” Arduino sketch that sends the required
GET request to the web server. Before trying
the sketch, remember to change the Wi-Fi
credentials and PHP script URI in lines 1-3.
The setup() function contains the same Wi-
Fi initialization procedure as in the Arduino
sketch that sends POST requests.

Inside the loop() function, there’s
also a non-blocking delay to send requests
periodically on a time interval defined by
the “READ_INTERVAL” constant. Inside the
“if” statement (lines 11-17), the GET query
string is built and the request is sent to the
server. Lines 12-13 define the start and end
dates for the data we are interested in to
query the database. These dates must be
generated dynamically, depending on the
specific application. Here, for simplicity, we
are defining them statically in the code.

Line 14 builds the GET query string by
concatenating the “from_date” and “to_date”
key:value pairs. This string will be appended
to the base PHP script URI from line 3. Line
15 invokes the Send_Get_Request()
function to send the request. Inside the
aforementioned function (lines 20-37), a
connection to the web server is opened, and
the HTTP GET request is sent (line 25). The
second argument to the function in line 25 is
the string concatenation (“+”) of the base PHP
script URI and the GET request string. The
resulting string will look this:

“ht tp://192.168.0.15/backend/fetch_csv.
php?from_date=2023-08-08&to_date=2023-
08-08.”

Line 26 retrieves the HTTP response code
from the server. It will have a positive value
if the server received and processed the
request. It will be negative if a communication
error occurred. If the code is 200 (“HTTP_
CODE_OK”), the server has acknowledged our
request and sent a response. So, we retrieve
the payload from the HTTP response’s body
and print it to the serial monitor (line 30).
This payload contains the CSV string with the
sensor readings fetched from the database.
Figure 5 is a screen capture of the Arduino
IDE’s serial monitor showing the received
CSV string. The first text row shows the HTTP
response code. The CSV string begins in the
second row, which shows the column names,
followed by ten rows of sensor data.

After retrieving the payload, the CSV
string must be parsed to obtain all individual
sensor values. To keep the focus on the scope
of this article, I will not describe here how to
do the parsing. Nevertheless, the full source
for this example contains parsing code using
the “CSV_Parser” Arduino library. You can

Additional materials from the author are available at:
www.circuitcellar.com/article-materials
References [1] to [3] as marked in the article can be found
there.

RESOURCES

Arduino | www.arduino.cc

Espressif | www.espressif.com

FIGURE 5
Fetching the CSV file using the ESP8266.

http://192.168.0.15/
http://192.168.0.15/backend/fetch_csv
http://www.circuitcellar.com/article-materials
http://www.arduino.cc
http://www.espressif.com

circuitcellar.com 21
FEATU

RES

download it from the Circuit Cellar Article
Materials and Resources webpage.

It is worth noting, however, that receiving
and parsing CSV strings can consume a great
amount of the MCU’s RAM, depending on the
size of the incoming payload. This limits in
practice the amount of data you can receive
and process with an MCU. The ESP8266-
based board I used for my prototype (the
“NodeMCU”) has 80KB of RAM. After compiling
my code with a 5,000-byte buffer for storing
the payload, I still had around 46.8KB of free
RAM. So, with the provided Arduino sketch,
you are limited to 5,000 characters (around
120 rows of sensors data). If you want to
receive more data, you must allocate more
bytes to the “payload_buf” buffer in the code.
But to avoid buffer overflows, it is advisable
to start your tests with less data in your
database, say around 10-20 rows.

CONCLUSION
Building backends with PHP and MariaDB is a

straightforward process once you understand
the basics of attending HTTP request with PHP
scripts and storing/retrieving data from the
database. Up to this point, we used unsecure
HTTP instead of secure HTTPS. Thus, because
of security concerns, the examples shown
here are only suitable for private Local Area

Networks. But adding a security layer on top
of what we have done already is not difficult.
There are HTTPS libraries for Arduino; and
the Raspberry Pi server can be equipped
with a “self-signed” SSL certificate to enable
HTTPS traffic.

We also set aside concerns regarding
one of the most infamous web security
vulnerabilities, known as “SQL injection.” This
is also not very complicated to address in
PHP, by following very simple guidelines when
building the SQL queries.

Next month, in Part 3 of this article series,
I will address some of these concerns, and
also will explain how to get data from the
server in JSON and XML formats. I will also
briefly discuss some workflow guidelines for
front-end web development regarding IoT
data visualization on a web browser.

ABOUT THE AUTHOR
Raul Alvarez-Torrico has a BEng in electronics and is the founder
of TecBolivia, a company offering services in physical computing and
educational robotics in Bolivia. In his spare time, he likes to experiment
with wireless sensor networks, robotics, and artificial intelligence. He is also
committed to publishing articles and video tutorials about embedded systems
and programming in his native language (Spanish), at their company’s site
www.TecBolivia.com. You may contact him at raul@tecbolivia.com.

T H E h i g h e s t p e r f o r m a n c e
S O F T WA R E D E F I N E D R A D I O

GREATEST BANDWIDTH EXCELLENT DYNAMIC RANGE HIGHEST CHANNEL COUNT

Per Vices

www.pervices.com
solutions@pervices.com

http://www.TecBolivia.com
mailto:raul@tecbolivia.com
http://www.pervices.com
mailto:solutions@pervices.com

RPiano: A Playable MIDI RPiano: A Playable MIDI
Synthesizer Synthesizer

CIRCUIT CELLAR • NOVEMBER 2023 #40022
FE

AT
U

RE
S

R Piano, our digital adaptation of the
traditional mechanical instrument,
consists of a physical keyboard
ranging over two octaves. The keys

can be played like a regular piano, as shown in
Figure 1. On pressing a key, our synthesizer
produces the note sounds digitally, just like
a traditional piano would mechanically. The
key shape and size match exactly that of a
traditional piano key, making the transition
from a traditional piano to RPiano fairly
smooth.

RPiano also has several built-in features
that can be accessed by pressing the relevant
buttons located just above the keys. Our
current prototype has five stored songs,
each with its own control button (Figure 2).
Pressing the button for a song plays that song
through a pair of attached speakers, digitally
producing all the notes in the song, played in
time to match the song’s rhythm. Additionally,
the prototype has three different instrument

modes (with corresponding buttons) that
simulate the following three instruments:
a grand piano, a harp, and bells. When a
particular instrument mode is activated, the
key presses on RPiano play the note with the
tone of the instrument selected. Lastly, RPiano
supports playing both the physical keyboard
and a chosen pre-stored track simultaneously.
This facilitates duets: the user can play one
part on the keys while the in-built synthesizer
plays the other.

While the buttons correspond to a few
preselected songs, RPiano serves more
broadly as a general-purpose synthesizer. It
can synthesize any music file stored in the
industry standard Musical Instrument Digital
Interface (MIDI) format. Thus, RPiano’s
compatible with millions of existing files—
anything from the latest pop hits to Mozart’s
timeless symphonies—with no additional
processing. The user can easily change
RPiano’s set of songs by supplying MIDI file

By By
Samiksha HiranandaniSamiksha Hiranandani

On a Raspberry Pi MicrocontrollerOn a Raspberry Pi Microcontroller

Eager to explore the interface between music and electronics, and the digital
representation of music, we created RPiano: a portable, playable MIDI synthesizer
on a Raspberry Pi Pico (RP2040). We developed RPiano over the course of four
weeks as our final project for Cornell University’s course Digital Systems Design
Using Microcontrollers. This article details our experience building RPiano.

circuitcellar.com 23
FEATU

RES

paths for each song in the preferred set when
compiling the software for the device.

The high-level structure of our project can
be seen in Figure 3. There are three different
types of user inputs: physical key presses on
the keyboard, button presses to play a song,
and button presses to switch instrument
modes. Each of these modifies either the notes
played or the kind of sound that is produced.

We used frequency modulation (FM)
synthesis to synthesize the audio output and
implemented the FM synthesis algorithm in
software. The synthesis generates a final
output wave using the set of notes to be
played, and the kind of sound to be produced
(piano, harp, or bells) based on user input.
The output wave is sent to a pair of speakers
and played out loud.

PROJECT HARDWARE
The project was built using the RP-2040

chip, the chosen microcontroller (MCU) for our
course. Its high performance, low cost, and
compact size made it ideal for our project.
The other hardware components of the
project include touch sensors to sense user
inputs from buttons and touch-sensitive keys,
as well as the hardware used for audio output
(DAC, speakers). Our entire circuit schematic
is shown in Figure 4. The key functions of
specific components have been described in
further detail in this section.

Touch sensing: To detect key presses, we
used human conductance to utilize a similar
effect to capacitive sensors. We placed a
1MΩ pullup resistor on the input, and used
a metal covering on the keys to make them
conductive. When a grounded person touches
the contact (metal key), they close the circuit
with their body, which pulls the input pin low.
By sensing the voltage on the input pin, we
could detect whether the key was pressed
(circuit complete) or unpressed. Various tests
to measure voltage values revealed that the
values remained consistently above 3V when
there was no contact with the key, while the
values ranged between 0.5V and 1.1V when
the key was pressed. This left sufficient room
for our voltage cutoff to be at 1.2V.

Key set-up and wiring: We made the keys
conductive using aluminum foil to wrap the
black keys, and copper tape for the white
keys. We secured a long copper wire to each
key such that each wire was in contact with
the metal surface of the key. These wires were
connected to the input sensing on the RP2040.
We made all our connections on breadboards
to ease prototyping, but they could be directly
soldered for more reliable connections. We
built the keyboard on a cardboard box, with
the electronics inside.

Multiplexers: With only 28 GPIO pins on

the MCU, we could not attach each of the
29 keys to individual pins. We decided to
multiplex the inputs from the keyboard to
be able to detect presses on all the keys. We
chose to use two 16x1 analog multiplexers.
The key inputs were connected to the inputs
of the two multiplexers. The multiplexers
required 4 GPIO pins to select which of the
16 inputs should be passed through to the
common output. The select inputs were
varied through software to read each of the
16 inputs (16 keys on each multiplexer). We
were able to reuse the same selector signal for
both multiplexers. This system enabled us to

FIGURE 1
RPiano model

FIGURE 2
Keyboard and buttons

CIRCUIT CELLAR • NOVEMBER 2023 #40024
FE

AT
U

RE
S

utilize 29 analog inputs while using only four
selector pins and two input pins, which freed
up the other pins on the RP2040 to handle the
other button inputs and the speaker output.
This also allowed easy extensibility to a larger
keyboard. With additional multiplexers, the
sensing capabilities can be expanded to 64
keys with only two additional analog input
pins.

Digital-to-analog converter: We used an
MCP4802 digital-to-analog converter (DAC)
to send our output signal from the RP2040
to a set of speakers. The DAC uses the Serial
Peripheral Interface (SPI) to take digital input

from the RP2040 and convert it to an analog
signal. This allows us to control a speaker
from the RP2040.

Speakers: We used standard desktop
speakers for output. It was important that
the speakers have their own power source
since the RP2040 and DAC are incapable of
providing the current required to play music
at our desired volume.

PROJECT SOFTWARE
On a high level, our software includes

three primary components, and is written
in C. The block diagram in Figure 3 shows,
at a high level, how the different software
components fit together.

•	 Part 1 is the FM synthesis algorithm to
compute the wave output written to the
DAC to send to the speakers.

•	 Part 2 comprises the user input detection,
detecting piano key presses, instrument
mode button presses, and song button
presses.

•	 Part 3 is the software for playing songs. It
handles the song notes to be pressed and
released based on stored metadata for a
selected song.

Another piece of software, separate from

FIGURE 3
High-level overview of the project

FIGURE 4
Circuit diagram for the project

PicoScope® 2000 Series
Ultra-compact range of 8-bit oscilloscopes and mixed-signal oscilloscopes (MSO). 2000B
models offer more memory and bandwidth. All models are USB-powered and have a
built-in function generator and AWG.

PicoScope® 3000 Series
General-purpose 8-bit oscilloscopes and mixed-signal oscilloscopes (MSO) that combine
fast sampling rates with class-leading deep buffer memories. All models have a built-in
function generator and AWG.

PicoScope® 4000 Series
High-resolution oscilloscopes with 12 to 16-bit resolution. Low noise and distortion
provide unmatched signal fidelity. All are USB-powered and most include an AWG.
Series includes differential-input models.

PicoScope® 5000 Series
Flexible Resolution Oscilloscopes. Breakthrough ADC technology allows a range of
hardware resolutions from 8 to 16 bits. Combines the high sampling rate of the PicoScope
3000 Series with the high resolution of the PicoScope 4000 Series.

PicoScope® 6000 Series
High-performance oscilloscopes with up to 1 GHz bandwidth, 8 or 8-12 bit flexible
resolution and ultra-deep capture memory that delivers 200 ms capture duration at
maximum sample reate of 5 Gs/s. Optional MSO pods add up to 16 digital channnels

PicoScope® 9000 Series
The unique PicoScope SXRTOs and sampling Oscilloscopes for data eye diagram, speed
and jitter analysis out to 16 Gb/s. 9.5 GHz optical, clock recovery and differential
TDR/TDT options.

• w w w.saelig.com • 1-585-385-1750 • 71A Perinton Pk w y, Fairport, N Y 14450 •

https://www.saelig.com

CIRCUIT CELLAR • NOVEMBER 2023 #40026
FE

AT
U

RE
S

the code running on the MCU, is a Python
script to parse a chosen MIDI file, and store it
in the required format in program memory of
the program running on the MCU.

Our implementation is split into several
threads, referred to as “protothreads,” using
the protothreads library, a light-weight,
stack-less, threading library written entirely
in C [1].

SYNTHESIS THEORY
We chose to digitally produce the sounds,

using FM synthesis to compute amplitude
values for a note at a particular frequency,
and using additive synthesis to combine notes
at different frequencies into a single output
waveform.

FM synthesis: FM synthesis is a method
of sound synthesis that involves modulating
a waveform using another waveform. Two
waveforms are generated, and one is used to
modulate the other, as shown in Figure 5.

The two waveforms are controlled by
a logic structure that sets the value of each
waveform at every time point. The value is
based on how long the note has been played
and the relevant attack, sustain, and decay
parameters. At each time step the modulating
waveform is calculated first, and then its
amplitude is used to determine how far to step
the main waveform along a precalculated sine
table. This causes the main wave to progress
through the sine table at different speeds based
on the value of the modulating waveform.
This modulated frequency can simulate many

instruments better than the single pitch that
the basic synthesis algorithm generates [2].

Additive synthesis: For notes played at
the same time (such as a chord), we used
the principle of additive synthesis to add
together all the amplitude values to create a
sound comprising all the frequencies. This is
simple, and only requires that at each time
step we sum the amplitudes of every note
that is playing. We then divide by the number
of notes playing to normalize the volume.
Without normalizing, the output signal could
spike in volume when notes are pressed or
released.

SYNTHESIS IMPLEMENTATION
The core FM synthesis is done in an

interrupt service routine (ISR), computing
values for the final wave output that is
sent to the speakers through the DAC. Our
implementation for the FM synthesis builds
on an example by Bruce Land at Cornell
University [2].

The wave output values for producing
the sound for a particular note cannot be
precomputed and pre-stored for each note.
This is because the output frequency at which
values are written to the DAC needs to be high
to achieve reliable (not distorted) sound output,
and it would require too much memory to store
thousands of samples for each note frequency.
Thus, the output values are computed in real
time. These values are written to the DAC each
time the ISR executes. To write the DAC at
the high frequency required for good sound
quality, it is essential that the computation
is complete before a new value needs to
be written. Through experimentation, we
arrived at an optimal time interval value of 36
microseconds—large enough to leave sufficient
time for completing required computations but
small enough that the sound output is smooth
and pleasant to the human ear without any
distortions. This corresponds to an output
sampling frequency value of approximately
27.7kHz. Frequencies lower than this gave a
distorted output, leading to sounds that were
not smooth, while at frequencies higher than
this, with a shorter interval the computation
was not completed in time.

The efficiency of our design depended
heavily on optimizing the ISR to be as fast as
possible, ensuring that a new DAC value was
ready every 36 microseconds, without running
out of time in the ISR before the next value
needed to be completed. To play any MIDI
file, our implementation needed to support
playing any note in the entire range of the
piano (88 keys). Additionally, whether the
note is pressed (and needs to be included in
the output wave) is controlled by an external
input choice (physical keys, or choice of song),

FIGURE 5
Waveform illustrating frequency
modulation synthesis

circuitcellar.com 27
FEATU

RES

and constantly updated by external threads.
Checking all 88 keys in the ISR to see if they
were pressed and then computing the required
waveform for the frequency corresponding to
the key took up too much time and led to the
ISR running out of time before completion.
This produced distorted sounds.

We approached this problem by adding a
buffer for notes that could hold 10 unique notes
at a time (corresponding to 10 fingers on the
piano). This way, each time a note needs to
be played (either on detecting a physical key
press on the keyboard or a note play event
in the song), its note number is added to the
buffer. The ISR now only loops through the 10
notes in the buffer, checks whether they are
pressed or not, and then includes them in the
synthesis computation. The threads handling
user input add to this buffer read by the ISR,
as depicted in Figure 6.

There is also another FM synthesis control
thread that sequences the synthesis ISR,
precomputing fixed point constants to make
the ISR faster. The buffer is implemented
using an array, with each element in the
array contained in order sorted with respect
to when it was added to the buffer. When
the buffer is full and a new note needs to be
added, the key that was least recently played
is removed from the tail end and the new key
is added at the front.

The size of the buffer is a configurable
parameter that can be changed based on the
number of unique voices needed to be played
at the same time. The tradeoff of making the
buffer too large would be, however, a lower
sampling frequency due to the increase
in computation time in the ISR to handle
computations for a larger number of notes at
the same time.

USER INPUT DETECTION
A separate protothread handles physical

key press detections. For a total of 29 keys on
the physical keyboard, we use two 16-input
multiplexers, each connected to two separate
ADC input pins. MCU functions are used to
read the input values, and switch between
reading the two ADC inputs.

The value read from the ADC is converted
to a voltage value by multiplying the read
input value by a conversion factor defined
through experimentation. We defined a
voltage cutoff constant, and the press was
detected by checking if the resultant value
read was lower than the specified voltage
cutoff value. Through experimentation with
our physical setup, we determined a value of
1.2V for the voltage cutoff.

If the key press was detected, the note
corresponding to the key was set to play. To
prevent detecting a single key press twice, we

also stored a previously pressed Boolean value,
and the note press was only set if the key was
detected to be pressed and was previously not
pressed. Additionally, the current state of the
key was stored, so that it would be considered
“released” in the synthesis computation only
when the finger was lifted. This enabled us
to store information so that the produced
sound’s length was based on how long the key
was pressed.

BUTTON PRESSES
Appropriately, a thread called “button

press” detects button presses. This thread
checks to see if each of the five buttons
corresponding to the songs has been pressed
by reading the GPIO pin of the button.
When a press is detected, the song data
corresponding to the chosen song is loaded
into a global variable. It also enables pausing
and playing the song if it’s currently playing
or not playing, respectively.

Instrument button presses are detected in
a similar manner. If pressed, the parameters
of the FM synthesis are changed to be the
values tuned for the instrument corresponding
to the button. These parameters are accessed
by the ISR for synthesis, generating modified
sounds based on the parameter changes.

MIDI FILE REPRESENTATION AND
PARSING

MIDI files are the industry standard for
passing musical performance information
among electronic musical instruments and
computers. Unlike an MP3 or WAV file, it does
not contain real audio data, but instead, the

FIGURE 6
Software high-level overview

ABOUT THE AUTHORS
Samiksha Hiranandani (snh44@cornell.edu) is an undergraduate senior at
Cornell University studying Computer Science with an external specialization
in Electrical and Computer Engineering. She is excited by the integration of
software and hardware for engineering solutions.

mailto:snh44@cornell.edu

CIRCUIT CELLAR • NOVEMBER 2023 #40028
FE

AT
U

RE
S

notes played, their timing, duration, and
desired loudness, in sequence. Since it does
not store audio data, it is much smaller in
size than an alternative MP3 file, so it’s ideal
for our project with limited data storage. It’s
also compatible with different instruments—it
needs only to play the frequency corresponding
to a given note on the chosen instrument.
Further, MIDI files make it easy to change
tempo based on the user’s preference. Each
MIDI note number is mapped to a particular
frequency that corresponds to a note. For
example, MIDI note number 60 corresponds to
middle C on the piano (C4). We used Equation
1 to map MIDI note numbers to a frequency
used for FM synthesis:

(69)/12440 2 −= ⋅ nf

The MIDI format consists of a list of events,
such as “KeyOn” or “KeyOff,” that correspond
to note activation and release on a keyboard.
We chose to use the Mido library in Python to
parse this information [3]. We wrote a script
to read any MIDI file and store the required
data to play the song on our synthesizer. The
script takes in a MIDI file as input, prompts
the user to choose a track contained within
the MIDI file, and then parses a sequence
of MIDI events corresponding to the track
selected.

We chose to represent each MIDI event
with three fields: the note to press, the note
to release, and a hold time (the time to wait
before performing this event). The hold time
stored is a relative value and is converted
to a time in milliseconds by multiplying by a
constant conversion factor. Storing this time-
based information enabled us to store very
concisely enough data to reproduce the song’s
exact rhythm and playing style (adhering to
different elements of music like rests), note
values (how long each note is played), as well
as the pitch (the frequency of the note).

After reading all events, the script
accumulates a list of events, writing this in
the form of data to be stored in program
memory. On detecting a song play button, the
code iterates through each event in the song
data corresponding to the chosen song. Before

each event, the hold time in milliseconds is
calculated from the relative value stored.
This is done by multiplying a delay tick value,
1000ms, by a constant conversion factor for
the song. This conversion factor for the song
can be changed to speed it up or slow it down.

PERFORMANCE
Over four weeks, we were able to create

a playable keyboard that successfully detects
key touches and plays the required note. We
were also able to play any readily available
MIDI file on our synthesizer, making use of
the entire range of the piano (88 keys), and
handling songs that contain a wide range of
notes and different, complicated rhythms.
The pieces, when played on our synthesizer,
closely modeled the sound of a real piano,
and exactly replicated the rhythm and pitch
specified in the MIDI file. Circuit Cellar’s Article
Materials and Resources webpage contains a
link to a video of RPiano in action [4].

FUTURE WORK
Overall, our design meets our

expectations. In some areas, it even exceeded
our expectations—we did not expect to be
able to handle more complicated songs with
many chords and quick notes smoothly. In
terms of the physical design, while wiring the
keys with tape and using the breadboard was
a quick solution that worked smoothly for the
most part, in certain cases a key press would
not be registered while testing due to a wire
slipping. Soldering the wires onto the metal
for the keys and onto a board would improve
this issue, and would make the design more
foolproof and durable.

There are also multiple extensions
that we’d planned as stretch goals that we
could implement in addition to the existing
functionality. For the songs, we did not use the
volume information encoded in the MIDI file
since we wanted to be consistent with volume
across songs and the keyboard. The code could
be altered to include changes in loudness on
the keyboard, as well as effects like piano
and forte in sheet music. Another possible
extension is to add the three pedals to the piano
that create the sustain effect—we could modify
the FM synthesis parameters when the pedals
are pressed. Finally, we could also enable the
user to change the FM synthesis parameters
through a bar using a potentiometer. This
would allow users to dynamically alter the
kinds of sounds produced, rather than just
having three different modes.

Acknowledgments
I would like to acknowledge Ben Manninen,

a student at Cornell University, who worked
with me on this project.

Additional materials from the author are available at:
www.circuitcellar.com/article-materials
References [1] to [4] as marked in the article can be found there.

RESOURCES

Microchip Technology | www.microchip.com

Raspberry Pi | www.raspberrypi.com

Texas Instruments | www.ti.com

http://www.circuitcellar.com/article-materials
http://www.microchip.com
http://www.raspberrypi.com
http://www.ti.com

Meet stringent EMI
requirements and cut
choke size in half.

Our new portfolio of stand-alone active EMI filter (AEF) ICs help designers meet stringent
EMI requirements while reducing system size, weight and cost for single- and three-phase
AC/DC systems. The TPSF12C1/-Q1 and TPSF12C3/-Q1 allow engineers to shrink the
value of common-mode chokes by up to 80% inductance, resulting in over 50% smaller size
compared to purely passive filter solutions. Meet your EMI performance standards and
increase power density with AEF ICs today.

 Learn more > www.TI.com/AEF

23-0405-lowemi_tpsf12cxx-Print-Ad_REV.indd 123-0405-lowemi_tpsf12cxx-Print-Ad_REV.indd 1 4/12/23 12:35 PM4/12/23 12:35 PM

http://www.TI.com/AEF

CIRCUIT CELLAR • NOVEMBER 2023 #40030
TE

CH
 F

EA
TU

RE

 Embedded Displays Embedded Displays

By By
Michael LynesMichael Lynes

T iming. For those of us who have had
a long association with engineers,
or for that matter may in fact be
engineers themselves, timing is a

very interesting word. Let me explain.
Most people react to the subject of timing in

either a negative or at best ambivalent way. For
instance, if you say to a person, “Your timing is
off,” or “The timing is not good for me,” their
perception will be that there is a problem that
needs to be addressed. You see this a lot in
business or social situations where people will
negotiate a time for a meeting or try to tailor a
particular action to best fit in with their other
activities. Time management is a skill, and
whole industries have been dedicated to the
administration of personal and professional
time, with scheduling assistants, calendar
apps, and cloud-based day-timers.

On the personal front, much of our early
life experience from the time we enter
preschool is about learning the proper timing
for various types of interactions. Children are
drilled and trained in how to behave, and a lot
of the basic instruction will center around the
timing of a specific action or behavior—when
it is appropriate, and when it may not be.

With all the above said, for engineers, the
word timing has a very different meaning.

That is not to say that the prior two meanings
are invalid. But one of the charming, some
might say challenging, aspects of our sort of
folk is our strange fascination with time.

Take the example of social timing given
above. Based on my experience, when an
engineer finds themselves in a room full of
non-engineers, normal people if you will, there
is a bit of a disconnect. The conversations in
the room will likely revolve around everyday
subjects: the weather, sports teams, politics,
and so on. This is not to say that engineers
don’t have concern for these types of topics,
but our take on them is different.

The weather is a good example. If an
engineer happens to be present when the
subject of the weather crops up, you will
observe one of two responses. The first
and most common will be some form of
non-committal social noise. “Hmm,” is one
of my favorites, as is “Ah...yes,” said with
a polite nod. The intent is to signal to the
speaker that their speech has been received
and understood, and that further speech is
encouraged. I liken it to a low-level social
subroutine, a near-autonomic function
designed to passively ignore banal discourse
while not causing distress on the part of the
speaker.

It’s All About TimingIt’s All About Timing

circuitcellar.com 31
TECH FEATU

RE

As a past master of this technique, I
sometimes play an internal game to see
just how long I can respond in this manner,
employing a series of utterances comprised
of encouraging word fragments with zero
semantic content, while the person I’m
interacting with remains unaware that I’ve
checked out of the present moment and
instead am engaged in mentally running
through a problem from my latest embedded
firmware project—say a multi-level finite
state machine to be oddly specific, trying to
determine the best way to handle the timing
of reentrant variable concurrency.

To be clear, I’m not doing this to be
disrespectful, and I am in fact listening at
some level. The structure of my pseudorandom
response subroutine has a built-in priority
interrupt that summons my full awareness if
the conversation turns to a subject that I am
actually interested in, or if the opportunity
arises to deftly redirect the flow into a more
productive channel of discourse with a well-
placed joke or pun. The purpose served is in
fact a form of time scheduling, specifically to
optimize the conservation of personal time.
Engineers love efficiency, getting the most
value out of every waking hour. Note that
we are back to the subject of timing again,
employed as both a defensive shield and a
weapon with offensive capability.

The second form of response is triggered
if the banal discourse happens to touch on a
subject that I find appealing. The unfortunate
normal being whose innocent remark sparks
this reaction might feel their eyes widen in
horror as I launch into near-eidetic recall of
everything I’ve read on the topic. Returning
to the example of a weather-related
conversation, their offhand comment might
bring to mind a recent article I’d consumed
on the effects of stratospheric super-heating
caused by high-energy particles from solar
ejecta. Without the slightest concern for the
esoteric nature of the subject or their potential
lack of interest, a torrent of words spill
forth describing how the charged particles
slam into the Earth’s outer atmosphere and
subsequently influence long-range weather
patterns. In this case, my timing could not be
worse. Nevertheless, the unfortunate listener
will be subjected to a minutes-long diatribe
consisting of a highly technical and detailed
exposition of my thoughts on the matter.
And I will continue regardless of the victim’s
obvious discomfort or the glazed look in their
eyes, the fire-hose flow of information only
ceasing if my significant other happens to
be near enough to dig a well-placed elbow in
my ribs. Her superior timing may be able to
save me from myself, but in most cases, the
damage has been done. The conversational

buzz may resume, but unless another
engineer is present, my participation in it will
be severely curtailed.

THERE’S ALWAYS TIME TO DO IT
OVER...

As the old saying goes, “There’s never
time to do it right, but there’s always time
to do it over.” And, speaking of do-overs, the
subject of this month’s Technology Feature,
embedded displays, probably sounds familiar
to regular readers of this column. In fact, it
was only a short time ago—July of this year—
that we spent a good deal of time exploring
the capabilities of embedded displays from
the perspective of digital signage (“Digital
Signage,” Circuit Cellar 396, July 2023) [1].
However, this topic is as broad as the mighty
ocean that the Pequod set sail upon, and as
deep as the depths to which the white whale
himself might dive. So in this month’s issue,
we are going back into the belly of the beast,
so to speak, to look at embedded displays
once more.

But, before we delve into the hoary digital
guts of modern display technology, let’s take a
stroll down memory lane and talk a bit about
Old Guy Electrical Engineer (OGEE) displays.
Back in the ancient days of yore, displays were
huge, hot, noisy boxes that consumed a lot of
power and precious desk space. As mentioned
in another Tech Feature article, the ADM-
3A, or perhaps the beast shown in Figure 1,
would often be your working interface to the
DEC VAX 11/780 or PDP-11 minicomputer that

FIGURE 1
OGEE VT-100 Display

CIRCUIT CELLAR • NOVEMBER 2023 #40032
TE

CH
 F

EA
TU

RE

your current project was cross-compiling on
(Figure 2). Fun fact: All modern 102-style
keyboards owe their shape and function to
the original VT-100 keyboard seen in Figure
1, and the VT-100 screen cursor positioning
commands still work to this day.

These displays were not much more
than overgrown oscilloscopes with clunky
keyboards mounted in front of the tube. The
basic technology was comprised of a high
voltage cathode ray tube (CRT), enhanced with
control circuits driven by a small processor
and some RAM memory. CRT itself was an
even more ancient display technology that
used an electron gun that produced a narrow
beam of electrons, and deflection plates
that would guide the beam in a scan pattern
across the surface of a glass tube coated with
phosphor. The beam pattern was a row, or
“raster,” scan, and the speed at which the
scan would complete one sweep of the entire
display area was called the refresh rate.

These displays were able to render
images by taking advantage of the human
eye’s persistence of vision, the effect that
you can most easily perceive when you stare
at a bright light for too long and then look
away, preferably at a blank sheet of paper.
An afterimage of the bright light will appear,
seeming to float above the real image of the
blank sheet. The human eye is a miraculous
device, consisting of an organic light-focusing
mechanism and an opto-neuro-chemical
interface that we call the retina. The phantom
image you see is a side effect of the way your
eyes perceive images. Specialized cells of the
retina undergo a chemical change in response
to various frequencies of light. This causes
electrical impulses to be sent along the optic
nerve, and ultimately to the visual cortex of
the brain for processing. The chemicals that
are employed have a response time measured
in the millisecond range and can become
exhausted by intense exposure to light. The
refreshing of these cell chemicals takes time,
and has a relatively long hysteresis effect,
meaning that there is a period—the cycle
time—during which they cannot properly
convert the received light into the correct
impulses. This effect is perceived as an
“afterimage,” or phantom image, in your
vision.

This tendency of the eye to preserve an
image in this way allows display technologies
like movies and television to create the illusion
of motion by updating the picture at a higher
rate than the eye can perceive. In this case,
a complete picture is projected onto a screen.
The eye sees the picture for a moment,
and then a new picture, the next frame, is
projected onto the same spot. For obvious
reasons, the alignment of these pictures must

FIGURE 3
CRT raster scan timing

FIGURE 2
DEC VAX 11/780

circuitcellar.com 33
TECH FEATU

RE

be precise. The optimal picture change rate is
something around sixteen frames per second.
Once you achieve this rate or higher, the eye
no longer sees individual images or jerky
motion, but rather the illusion of smooth
animation.

So, how is this accomplished with a single
dot illuminated by an electron beam you might
ask? Well, it’s basically explained in the timing
diagram in Figure 3. As you can see, the
screen is divided into a number of elements—
let’s call them picture elements, or pix-els for
short. There are 640 pixels on one line of the
screen. Each one is the size of our electron
beam’s focal dot. Their size is also affected
by the grain size and type of phosphor, but
let’s leave that nit for another discussion.
The timing of the scan—and I can almost feel
your increase in interest as we return to our
favorite subject—is the important part.

Each raster is scanned by the horizontal
deflection of the beam. You can see this
depicted toward the bottom of Figure 3,
which shows the slope of the horizontal plate
deflection coil current. As the slope increases,
there is greater current and more deflection.
The pixels themselves are turned on or off
by the activation of the electron beam itself,
which is in turn modulated by the values in

the display buffer. The display buffer is a RAM
memory in which each “bit” is either a one
or a zero, corresponding to the gun being
on or off. Turning the gun on excites a pixel,
and off allows that pixel’s state to remain
unexcited. There is a decay rate of excitation,
an afterglow if you will, that we depend on to
see the image on the screen.

www.st.com

ST’s high-accuracy L9961
Battery Management
System controller makes
lithium batteries perform better and
last longer by providing monitoring,
balancing, and protection for
industrial applications as cordless
power tools, energy-storage
systems, portable equipment,
and more.

power tools, energy-storage
systems, portable equipment,

AD2308L9961_178x121.indd 1AD2308L9961_178x121.indd 1 04/08/23 01:5104/08/23 01:51

FIGURE 4
Full color LCD display update timing

http://www.st.com

CIRCUIT CELLAR • NOVEMBER 2023 #40034
TE

CH
 F

EA
TU

RE

As you can further glean from the timing
diagram, once the scan completes a row, it
then goes into the retrace area. During this
time, we reset the horizontal deflection to the
left-hand side of the screen, and, importantly,
we increase the vertical deflection such that
we are now going to trace our beam across
the next row of our display. Note that our
RAM, or display buffer, must have a row of
bits for each horizontal sweep and a depth
of bits that corresponds to the number of
vertical scans. This display is a VGA, 640x480,
which means that we can render an image
that is, at the most, 640 pixels wide by 480
pixels high. The top left is pixel 0,0 and the
bottom right 639,479 (max row, max column).
This addressing scheme is still used to this
day, and it’s a legacy of this old raster scan
tech.

Note that we are back to timing, once again.
Most of the magic in this diagram happens
during the retrace sync and the vertical
deflection update—that is to say, while your
human information processor is still receiving
and assembling the prior frame. During this
period, the RAM of the frame buffer is read
to allow the next row of dots to be displayed.
The entire frame buffer can also be updated—
all the rows once per vertical sync pulse, or
line by line after each horizontal sync pulse.
This understanding of timing is what allows

the display to function efficiently, and to
engineers it is both beautiful and crucial.

EMBEDDED DISPLAYS
Now, with that mischief managed,

let’s move on to our actual topic: modern
embedded displays. The critical thing to note
here is that all the prior art that was developed
for CRT displays—the moving picture frames,
the scan, the refresh rates, the colors (we
didn’t even touch on colors), and so on—are
all required for an embedded display to be an
effective information transmitter. Humans are
still the target audience, so we can still take
advantage of our unique visual processing
limits. But the technology and the timing
that makes embedded displays work is very
different.

As you can see in Figure 4, LCD-type
displays allow both horizontal and vertical
read and write access to each individual
screen element. In this case, all the updates
are digital, and the N-clock is used in place of
the high-speed analog raster scan, allowing a
full row of display elements, at whatever color
bit depth your individual display supports, to
be clocked in from the display buffer.

The vertical write update clock timing is
slower, but still needs to accomplish what CRT
hardware did with analog electronics. Namely,
it must refresh the entire screen’s worth of
bits (AKA the frame) at the specified refresh
rate. The LCD can also be read, which means
that you can capture elements of the screen
by reading the information out of the display
itself, or the corresponding frame buffer as
you prefer. With modern screens supporting
millions of colors, 1080p resolution, and
frame rates of 120 frames per second (fps),
we can see that the timing will become both a
critical and precise part of our design.

THE PHYSICS
Something I learned that I had not known

when researching for this article was a bit
about the physics involved in creating modern
AMOLED displays [2]. As shown in Figure 5,
the light produced by a light-emitting diode
is due to the electroluminescent effect. As
current flows across the semiconducting band
gap, energy is lost. In standard indirect band
gap diodes, this energy is converted into heat.
In LEDs, a direct band gap is used, and as

FIGURE 5
LED physics

Additional materials from the author are available at: www.circuitcellar.com/article-materials

References [1] to [10] as marked in the article can be found there.

RESOURCES
Avnet Embedded | embedded.avnet.com

Crystalfontz | www.crystalfontz.com

MIKROE | www.mikroe.com

STMicroelectronics | www.st.com

http://www.circuitcellar.com/article-materials
http://www.crystalfontz.com
http://www.mikroe.com
http://www.st.com
https://embedded.avnet.com

circuitcellar.com 35
TECH FEATU

RE

the gap is traversed, the lost energy produces
photons in a characteristic wavelength, which
is directly related to the band gap energy
of the materials forming the p-n junction.
If the casing that covers the junction is
transparent, this light will be able to escape
and be seen. The color or frequency of the
light can range from infrared to ultraviolet,
and everything in between (Figure 6). Some
of that range is in the visible spectrum, and
LEDs are chosen to produce the characteristic
primary colors (RGB) or secondary colors
(CMYK). Producing a specific color consists of
activating combinations of these LED dots and
varying their intensity to produce one of the
millions of colors we can render on modern
displays. I found the science to be fascinating,
and if you do as well, check out Circuit Cellar’s
Article Materials and Resources web page for
a link to an article detailing the incredible
manufacturing processes used to create these
dense LED arrays [3].

THREE TIMES IS THE CHARM...
A word about criteria: Embedded displays,

unlike the digital signage I wrote about in July
[1], have some restrictive requirements. A
good summary of these requirements can be
found on the Predictable Designs website [4].
One of the most important limits is power,
in that an embedded project often needs to
be configured to run on batteries. Embedded
displays must also be designed to give a lot of
bang for the buck—high-definition resolution,
fast update times, full-motion color, and can
be efficiently driven by smaller processors that
aren’t dedicated to video processing alone.
They also have to be small, and, in the same
way that it’s harder to write a great short
story than a novel, this alone is a significant
challenge. Last, they must be inexpensive, as
the budget for an embedded device can’t be
dedicated to the display technology alone.

It all seems like a tall order. Luckily there
are a lot of manufacturers that have stepped
up to supply this need. So, without further,
further ado, let’s look at some of the best
examples of embedded displays available on
the market today.

MIKROE: MIKROE, founded in 2001 with
headquarters in Belgrade, has thousands of
embedded products designed with both the
industrial IoT market and the hobbyist in mind
[5]. It has a full line of embedded displays,
and its thin film transistor (TFT) product
line (Figure 7) features full-color capacitive
touchscreens in a wide variety of form factors
[6]. Prices range from $26 for a 4.3” display
to approximately $90 for a 7” diagonal model.
Color spectrums are wide and deep, and
MIKROE offers comprehensive documentation
and support for all its products.

FIGURE 7
MIKROE 2168 TFT

FIGURE 6
PN junction colors

CIRCUIT CELLAR • NOVEMBER 2023 #40036
TE

CH
 F

EA
TU

RE

Crystalfontz: Crystalfontz is a
manufacturer of all sorts of displays, from
monochrome transparent OLED (TOLED), to
full-color AMOLED, TFT, and ePaper. Its line
of resistive touchscreens features enhanced
readability in direct sunlight and has 800x400
resolution in a 5” diagonal package (Figure 8)
[7]. The company offers discounted volume
pricing, 16 million colors, and wide-angle
viewing thanks to their IPS display technology.
Its resistive touch is optimized for more
rugged environments where the need to have
thick protective coverings is crucial. Screen
resolutions range from 80x160 to 1280x800
pixels, and low-power options are available.

STMicroelectronics: ST has a range of
Cortex ARM-based Discovery kits with high-
resolution displays built in. These kits, such
as the STM32H747 (Figure 9), feature support
for a wide variety of OS and IDE environments,
and they support ST’s embedded display
controller technology, allowing full motion at
high frame rates with little to no “tearing”
issues due to their ability to sync updates
with the screen refresh [8].

A perfect example of timing to the rescue,
ST offers the kit through many vendors,
with the expected excellent support that
ST is known for throughout the industry.
Once you’ve developed your application,
it’s an easy translation to a wide variety of
supported displays. And, as I learned from
the company-sponsored webinar on deep
learning [9], their TouchGFX framework
makes porting a breeze.

Avnet Embedded: Avnet Embedded
has deep experience in the embedded
environment [10]. It’s a division of Avnet
GmbH, founded over 100 years ago in
Freiburg, Germany. The original Avnet began
serving customers as a distributor in New
York City in 1921, eventually growing to a
huge multinational with offices around the
world. The Avnet Embedded division was
created in 2001, originally as Avnet EMG,
and went through several iterations over the
next couple of decades before relaunching as
Avnet Embedded in 2021.

ABOUT THE AUTHOR
Michael Lynes is an entrepreneur who has founded several startup ventures. He was awarded a BSEE
degree in Electrical Engineering from Stevens Institute of Technology and currently works as an embedded
software engineer. When not occupied with arcane engineering projects, he spends his time playing with his
three grandchildren, baking bread, working on ancient cars, backyard birdwatching, and taking amateur
photographs. He’s also a prolific author with over thirty works in print. His latest series is the Cozy Crystal
Mysteries. Book one, Moonstones and Murder, is already in print, and book two is on its way. His latest
works include several collections of ghost stories, short works of general fiction, a collection called Angel
Stories, and another collection called November Tales, inspired by the fiction of Ray Bradbury. He currently lives with his wife
Margaret in the beautiful, secluded hills of Sussex County, New Jersey. You can contact him via email at mikelynes@gmail.com.

FIGURE 9
STMicroelectronics Disco Kit

FIGURE 8
Crystalfontz TFT resistive touchscreen

mailto:mikelynes@gmail.com

circuitcellar.com 37
TECH FEATU

RE

Display technology for the embedded
market is one of Avnet’s core strengths, and
its human-machine interface (HMI) line of
displays and touchscreen technology is second
to none. They also feature a comprehensive
line of SimplePlus TFT displays ranging
from 4.3” displays to huge 21.5” diagonals
with 1920x1080 resolution, suited for high-
definition medical equipment applications
(Figure 10).

CODA: CIRCUIT CELLAR’S
400TH ISSUE

And last, speaking of timing—the timing
of my association with Circuit Cellar over the
past twelve months seems to me to be
fortuitous, as I have very much enjoyed
writing this series and I do hope it continues
into the coming new year. In this particular
missive, I’ve really gone on (and on, and on),
but I think in this case I can be excused. As
you are likely aware, this is the 400th edition
of Circuit Cellar published since the start of
the magazine all those many years ago. I am
honored to have had the opportunity to
headline it. While my association with this
publication is barely a year old, I feel quite
at home here, and working with Sam, our
Editor-in-Chief, as well as KC, our publisher,

has been both a professional pleasure and a
treat. In any case cellar dwellers, happy
400th! Thanksgiving is almost here in the
US, and winter is coming, so let’s raise an
appropriately timed wassail glass and toast
to CC and the next 400 editions to come.
That’s all from me for now. My time is up,
and I can see the hook reaching out from
stage left as I speak. Until next time…

FIGURE 10
SimplePlus from Avnet Embedded

Optimized to support public building air quality standards

FIRMWARE CONFIGURABLE INDOOR AIR QUALITY (IAQ)
SENSOR WITH EMBEDDED ARTIFICIAL INTELLIGENCE (AI)
FIRMWARE CONFIGURABLE INDOOR AIR QUALITY (IAQ)

SENSOR WITH EMBEDDED ARTIFICIAL INTELLIGENCE (AI)

Visit renesas.com/zmod4410 to learn moreVisit renesas.com/zmod4410 to learn more

https://www.renesas.com/zmod4410

CIRCUIT CELLAR • NOVEMBER 2023 #40038
D

AT
AS

HE
ET

Datasheet:

DC-DC Converters

N anopower, high-efficiency, ultra-
compact, intelligent power sharing—at
great risk of repeating myself, today’s
DC-DC converters continue to evolve

in many directions. This is perfectly natural,
of course, considering the myriad new, niche
applications that sprout up every week, each with
its own set of needs. So whether the converter
is designed to accommodate multi-voltage
electronics, battery-powered devices with long
standby times, rugged applications exposed to
a wide operating temperature range, or if the
module simply needs to be very, very small,
manufacturers keep rising to the challenge—
producing DC-DC converters with still higher
power densities, wider voltage ranges, more
advanced filtering, and still tinier footprints.

It’s also perfectly natural, then, that a gallery
such as this can only capture a minuscule sliver
of the huge breadth of options available on the
market today. A primary consideration in Circuit
Cellar’s DC-DC converter selection this month was
“newness.” That is to say, rather than attempt to
convey the full range of converter possibilities out
there, we went with items that are, for the most
part, piping-hot fresh. In the next few pages, we
present devices with ultralow quiescent currents,

ultra-small footprints, high configurability, low
costs, intelligent capabilities, and high efficiency,
to name just some of the gallery’s highlighted
features. These converters target various
sectors, from networking and communications,
to battery-powered devices, to industrial
solutions, to current-sensing applications, and
more. There are several familiar names in the
following gallery—ST, TI, and Analog Devices to
name a few—and others that might be new to
the reader.

As an example of an out-of-this-world
application (please pardon the pun), VPT
announced in August their SVLFL5000 series built
for the missions in space. With “Total Ionizing
Dose” (TID) performance and “Enhanced Low
Dose Rate Sensitivity” (ELDRS) to 60krad, these
wide input voltage range converters are operable
over the full military temperature range (-55°C to
+125°C) with no power derating. They are suited
for applications in low Earth orbit, medium Earth
orbit, geostationary orbit, and even deep space
missions. I highlight this particular device to
drive home the point that DC-DC converter
solutions are increasingly wide-ranging, in the
most literal sense. And just in case we have any
engineers reading this issue in orbit.

By
Sam Wallace,
Editor-in-Chief

Manufacturers continue to roll out flexible, efficient, and extremely tiny DC-DC
converter modules. This month’s gallery offers a glimpse of the many offerings
currently available on the market for myriad niche embedded solutions.

From the Hyper-Small From the Hyper-Small
to the Far Outto the Far Out

NEXT MONTH'S TOPIC: Tiny Embedded Boards Send related product announcements to editor@circuitcellar.com

mailto:editor@circuitcellar.com

circuitcellar.com 39
D

ATASHEET

DATASHEET URLS:

Analog Devices MAX18000: https://www.analog.com/media/en/technical-documentation/data-sheets/max18000.pdf

Bel Power Solutions 700DNG40-24-8: https://www.belfuse.com/resources/datasheets/powersolutions/ds-BPS-700DNG40-24-series.pdf

Flex Power Modules BMR314: https://flexpowermodules.com/resources/fpm-flyer-dc-dc-converters-for-ai-applications

Liquid-Cooled Converter for
Hybrid and Electric Vehicles

The Bel Power Solutions 700DNG40-
24-8 is a 2nd generation 4kW liquid-
cooled DC-DC converter that creates
DC voltages in hybrid and electric
vehicles suitable to power low voltage
accessories. 700DNG40-24-8 converter
operates at input voltages from 450 to
900VDC and delivers up to 4000W of
output power. Features include very
high efficiency, high reliability, low
output voltage noise, and excellent
dynamic response to load/input
changes. This converter is designed for
applications in construction equipment,
underground mining, ground support
equipment, on- and off-highway
vehicles, and marine equipment.

• Very high efficiency up to 95 %
• Input voltage range: 450 – 900 VDC
• Output power up to 4 kW
• Parallelable up to 8 unit
• Full galvanic isolation between input

and output
• Liquid cooled
• CAN bus serial interface
• Optional UDS functionality, CAN FD &

Cyber security
• Adjustable output voltage and over

current protection
• Over temperature, output over

voltage and over current protection,
input and output reverse polarity
protection

• IP rating IP67 & IP6k9k
• E-Mark Certification

Bel Power Solutions
www.belfuse.com

nanoPower Boost Converter
with Ultralow Quiescent
Current

The MAX18000 is a nanoPower boost
converter with an input voltage range
of 0.5V to 5.5V (VOUT > VIN + 0.2V)
and a switching current limit of 3.6A. It
features an ultralow quiescent current
of 512nA which makes it ideal for
battery-powered applications requiring
a long standby time. The IC operates
in nanoPower mode at low loads and
transitions into skip and CCM modes
of operation at higher load currents
to ensure high efficiency over a wide
current range. The output voltage
can be varied between 2.5V and 5.5V
using a single RSEL resistor. The IC
features a True Shutdown mode, which
disconnects VIN and VOUT when the EN
pin is pulled low.

• 0.5V to 5.5V input voltage (VOUT > VIN
+ 0.2V)

• 1.8V minimum start-up voltage
• 2.5V to 5.5V (in 100mV steps) output

voltage
• 3.6A cycle-by-cycle inductor current

limit
• 512nA IQ supply current into the

output
• Output short-circuit protection
• Thermal-shutdown protection
• 95% peak efficiency with 90% or

higher efficiency for load > 20µA
• 1.07mm x 1.57mm, 0.5mm pitch

6-bump WLP
• -40°C to +125°C operating

temperature range

Analog Devices
www.analog.com

Ultra-Small Digital Non-
Isolated IBC with 4:1
Conversion Ratio

The BMR314 is a non-isolated,
unregulated digital intermediate bus
converter (IBC) that delivers 800W
of continuous power, and 1.5kW of
peak power in an ultra-small package
measuring just 23.4 x 17.8 x 9.65mm.
Operating over an input voltage range
of 38-60V, the 4:1 input-to-output ratio
results in an output range of 9.5-15V. At
an input voltage of 54V, the efficiency of
the module is as high as 97.4% at 50%
load (35A), and the part is thermally
optimized for cold wall mounting via
the attached baseplate. The BMR314
is offered in an industry-standard
LGA footprint and pin-out for security
of supply and second sourcing. It can
deliver a power density of more than
373W/cm3 or 6.1kW/in3 when delivering
peak power to the load. Designed for
powering cloud-based applications
including AI, machine learning, and
hyperscale computing.

• Compact non-isolated DC/DC
converter

• Input output ratio 4:1
• Digital PMBus interface
• LGA industry standard footprint and

pinout
• Halogen-free
• Optimized thermal design for cold

wall
• Dimensions: 23.4 x 17.8 x 9.65 mm

Flex Power Modules
flexpowermodules.com

http://www.belfuse.com
http://www.analog.com
https://www.analog.com/media/en/technical-documentation/data-sheets/max18000.pdf
https://www.belfuse.com/resources/datasheets/powersolutions/ds-BPS-700DNG40-24-series.pdf
https://flexpowermodules.com/resources/fpm-flyer-dc-dc-converters-for-ai-applications
https://www.flexpowermodules.com

CIRCUIT CELLAR • NOVEMBER 2023 #40040
D

AT
AS

HE
ET

DATASHEET URLS:

OmniOn Power DLynx III MLX040: https://www.omnionpower.com/assets/pdfs/windchill/data-sheet/mlx040_ds.pdf

RECOM RxxC05TExxS: https://g.recomcdn.com/media/Datasheet/pdf/.fiSlC8jY/.tce0d3579c4367bc096e6/Datasheet-514/RxxC05TExxS.pdf

Renesas RAA211630: https://www.renesas.com/us/en/document/dst/raa211630-datasheet

Datasheet:

DC-DC Converters

Synchronous Step-Down
Regulator for Industrial Power
Systems

The RAA211630 is a DC/DC
synchronous step-down (Buck) regulator
that supports a 4.5V-60V input voltage
range and adjustable output voltage.
It can deliver up to 3A of continuous
output current with premium load
and line regulation performance. The
RAA211630 uses peak-current mode
control architecture. Its PWM switching
frequency is programmable to provide
the best trade-off between transient
response and efficiency. It supports
PFM operation and DEM to maximize
light-load efficiency, in addition to
an external bias LDO input to further
reduce power dissipation across the
load range.

• Wide input voltage range: 4.5V to 60V
• Adjustable output voltage: 0.8V to

90% of VIN
• Up to 3A of continuous output current
• Default 400kHz switching frequency

and programmable switching
frequency range from 200kHz to
800kHz

• ±1% Load regulation accuracy from
-40°C-125°C, ±0.5% load regulation
accuracy at 25°C

• 95µA typical quiescent current
• Internal compensation
• Internal 0.5ms soft-start in QFN;

External programmable soft-start
(HTSSOP)

Renesas
www.renesas.com

Low-Cost, Low-Profile
Isolated DC-DC Single Output
Converter

The R05C05TE05S is a low-cost,
low-profile, 0.5W SMD isolated DC-DC
single output converter with a 4.5-
5.5V input range and a semi-regulated
5V output. There is no minimum
load requirement which is ideal for
applications that switch into very light
load operation modes. The device is also
able to deliver 600mW for applications
requiring additional power for short-
peak operation modes. Standard
isolation is 3kVDC/1min, and the
operating temperature is from -40°C
up to +125°C with derating. The fully-
automated design, which is equipped
with short-circuit, over-current, and
over-temperature protection, ensures
the highest reliability in applications
such as communication, current
sensing, and COM port isolation.

• Compact 10.35 x 7.5mm SMD package
• Low profile (2.5mm)
• 3kVDC/1min isolation
• Low EMI emissions
• Ultra-wide temperature range -40°C

to +125°C
• Fully automated, high-reliability

design
• Semi-regulated 5V output

RECOM
recom-power.com

Efficient and Flexible Power
Modules

The digital DLynx III power modules
are easy-to-use, highly configurable
non-isolated DC-DC converters that can
deliver up to 320A of output current with
a master/satellite configuration. These
DC-DC converters from OmniOn Power
(previously ABB Power Conversion)
are ideally suited for networking,
industrial, and datacoms applications,
and enable increased efficiency and PC
board design flexibility through master-
satellite groupings for single- or dual-
output voltage configurations. The
master DC-DC converters can be used
as standalone point-of-load modules
or with satellites to help meet growing
board-level power requirements and
power density outputs.

• Minimized board space requirements:
High-density footprint (119 to 205A/
in2, depending on module); Optional
satellite phase modules provide
increased output voltage or secondary
output option

• 90% efficiency at full load (12VIN,
1VOUT, at 25°C); Phase shedding
for increased efficiency at low-load
operation

• Modules provide maximum rated
current for 12VIN, 1VOUT at 200lfm
airflow and at 80°C ambient
temperature or better

• Overvoltage/undervoltage and
overcurrent/undercurrent protection

• Temperature operating range: -40°C
to 85°C

OmniOn Power
omnionpower.com

https://www.omnionpower.com/assets/pdfs/windchill/data-sheet/mlx040_ds.pdf
https://g.recomcdn.com/media/Datasheet/pdf/.fiSlC8jY/.tce0d3579c4367bc096e6/Datasheet-514/RxxC05TExxS.pdf
https://www.renesas.com/us/en/document/dst/raa211630-datasheet
http://www.renesas.com
https://www.recom-power.com
https://www.omnionpower.com

circuitcellar.com 41
D

ATASHEET

High Efficiency in a Compact
Footprint

The STMicroelectronics L6983I 10W
isolated buck (iso-buck) converter
ensures high efficiency and a compact
footprint, with advantages including
low quiescent current and 3.5V-38V
input-voltage range. The L6983i is
suitable for applications that require an
isolated DC-DC converter. It implements
an iso-buck topology, which uses
fewer components than a conventional
isolated flyback converter and requires
no optocoupler, saving bill-of-materials
costs and PCB space. Further benefits
of the L6983i include 2µA shutdown
current and integrated functions such
as adjustable soft-start time, internal
loop compensation, and power good
indicator, as well as protection from
overcurrent and thermal shutdown. The
selectable spread-spectrum feature
improves EMC performance.

• Designed for iso-buck topology
• 3.5V to 38V operating input voltage
• Primary output voltage regulation, no

optocoupler required
• 4.5A source/sink peak primary current

capability
• Peak current mode architecture in

forced PWM operation
• 390ns blanking time
• 200kHz to 1MHz programmable

switching frequency. Stable with low
ESR capacitor: min 2µF

• Internal compensation network
• 2μA shutdown current

STMicroelectronics
www.st.com

Integrated Buck Converters
Offer Intelligent Power-
Sharing Capabilities

Silanna Semiconductor’s SZPL3002A
DC/DC converter ICs are the world’s
first integrated buck converters to offer
intelligent power-sharing capabilities.
The SZPL3002A is a high-efficiency,
synchronous buck converter along
with a USB-PD controller creating a
complete, single IC, downstream facing
USB-PD compliant port. The device can
supply fixed output voltages as well
as Programmable Power Supply (PPS)
profiles for fast charging to connected
devices. The device also supports the
Qualcomm QuickCharge protocols,
QC2.0/3.0/4.0/4.0+/5.0, supporting
Type-C output ports as well as Type-A
ports.

• Synchronous buck regulator with
switching frequencies up to 2MHz

• Integrated USB-PD controller
supporting USBPD R3.0, PPS, BC1.2,
QC 2.0/3.0/4.0/4.0+/5.0 support

• Intelligent multiport power sharing
and power re-balancing

• High efficiencies (>98%)
• Selectable power saving mode
• Selectable power contract

configurations reduces required
programming

• Temperature triggered power
throttling

• VCONN power generation for
e-Marked Cables

• Wide Input Voltage Range: 7.0V to 27V
• Supports VOUT of 3.3 ~ 21.5V, at 3.25A

Silanna Semiconductor
powerdensity.com

DATASHEET URLS:

Silanna Semiconductor SZPL3002A: https://powerdensity.com/wp-content/uploads/2022/08/SZPL3002A-Product-Brief-Prelim.pdf

STMicroelectronics L6983I: https://www.st.com/resource/en/datasheet/l6983i.pdf

Texas Instruments TPS61299: https://www.ti.com/document-viewer/tps61299/datasheet

Synchronous Boost Converter
with Average Input Current
Limit

The TPS61299 is a synchronous
boost converter with a 95nA ultra-low
quiescent current and an average input
current limit. The device provides a
power solution for portable equipment
with alkaline batteries and coin
cell batteries. This device has high
efficiency under light-load conditions
to achieve long operation time and the
average input current limit can avoid
battery discharging with high current.
The TPS61299 has a wide input voltage
range from 0.5V to 5.5V and an output
voltage range from 1.8V to 5.5V. The
device has different versions for the
average input current limit from 5mA to
1.9A. The TPS61299 with a 1.2A current
limit can support up to 500mA output
current from 3V to 5V conversion and
achieve approximately 94% efficiency
at 200mA load.

• Input voltage range: 0.5V to 5.5V
• 0.7V minimum input voltage for start-

up
• Input operating voltage down to

150mV with signal VIN > 0.7V
• Output voltage range: 1.8V to 5.5V

VSEL pin select output voltage
• Average input current limit: 5mA;

25mA; 50mA; 100mA; 250mA,
500mA, 1.2A, 1.9A (different versions)

• 95nA typical quiescent current from
VOUT

• 60nA typical shutdown current from
VIN and SW

Texas Instruments
www.ti.com

http://www.st.com
https://powerdensity.com/wp-content/uploads/2022/08/SZPL3002A-Product-Brief-Prelim.pdf
https://www.st.com/resource/en/datasheet/l6983i.pdf
https://www.ti.com/document-viewer/tps61299/datasheet
http://www.ti.com
https://powerdensity.com

42
CO

LU
M

NS

By
Brian Millier

CIRCUIT CELLAR • NOVEMBER 2023 #400

How Did They Do It Back Then?How Did They Do It Back Then?

Before Transistors

B oth at work and at home, we expect
that most of the devices we use
daily will contain some form of a
microcontroller (MCU), or at least

electronic circuitry. Sometimes this trend
goes overboard, and we hear talk of toasters
that are Internet-connected.

Many of these consumer and commercial/
industrial products were introduced 50-
75 years ago—prior to the invention of
transistors, never mind complex digital
integrated circuits. How did the engineers and
designers of the era design products that, while
not as sophisticated as those available now,
nevertheless did the job adequately? When I
began my career at General Electric Consumer
Products Division, I quickly discovered just
how cheaply electromechanical components
could be made, and that these components
could still do the job in a reliable way.

In this column, I’m going to describe several
components and circuits—found in industrial,
scientific, and consumer products—that
I’ve worked with and found to be extremely
ingenious. Let’s start close to home.

A HIGH-POWERED KITCHEN
Electric stoves have been around for 100

years. Regardless of their vintage, they all
contained a number of “surface units” for

heating foods in pots and skillets. These
heaters consume about 3000W, on average,
and ideally should be finely adjustable in
terms of heating power delivered. Early
stoves contained surface units in which the
spiral Calrod heating element was made up of
three discrete heaters of different wattages.
A complex mechanical switch would “dial in”
eight different combinations of these three
elements, providing a rough control of heating
power. This wasn’t ideal, and in time, the
infinite heat switch was invented (Figure 1).

Using modern components and techniques,
controlling an AC-powered 3000W heater today
would likely be done with a PWM generator
feeding a solid-state relay (which is basically
an opto-coupled TRIAC mounted in a heatsink
enclosure). In the 1970s, when infinite heat
switches were introduced for stoves, SCRs
were quite new and still expensive, and
TRIACS were not available.

Referring to Figure 2, SW1 is a set of high-
current contacts, one of which is connected
to a length of bimetallic strip. A bimetallic
strip is made up of two dissimilar metals
that each have different thermal coefficients
of expansion. When heated, a bimetallic strip
will bend in proportion to how much heat is
applied. In this device, the bimetallic strip has
a small heater coil wound around it. The dial

PICKING UP MIXED SIGNALS

As part of Circuit Cellar’s celebration
of its 400th issue, Brian looks back
at some ingenious electromechanical
devices that performed necessary
functions, using existing technology.
Many were so clever that they
are still in use today—even while
microcontrollers are used in just
about everything.

FIGURE 1
This is an infinite heat switch—
an electromechanical device
capable of handling 3000W with
a resolution that would normally
be associated with a PWM circuit.

circuitcellar.com 43
CO

LU
M

NS

of an infinite heat switch is connected to a
contoured cam. When it is moved from the off
position, it closes both SW2, the on-off switch,
and SW1 containing the bimetallic strip. At
this point, the 240VAC will pass through both
switches and power up both the surface
unit and the small heater wound around the
bimetallic strip. When this small heater heats
up it will bend the bimetallic strip so that it
opens the contacts of SW1. Both this small
heater and the surface unit will then stop
heating, and in a few seconds, the bimetallic
strip will cool off and SW1 will again close.
While this diagram doesn’t accurately reflect
the shape of the cam, suffice it to say that as
you rotate the dial knob for more heat, the
cam will adjust the position of the bimetallic
strip in such a way that it must heat up more
to open SW1’s contacts. The whole on-off cycle
will take 10-40 seconds, depending upon the
dial setting, and the PWM duty cycle will vary
from about 10% to 100% in fine increments.

When I first encountered them in the mid-
1970s, infinite heat switches were made by
Robertshaw, and they still are. Back then, I’m
sure they cost no more than a few dollars to
manufacture—a tiny fraction of what it would
cost to perform the same function using PWM
plus a solid-state relay. From experience, I
know that they can easily last 20+ years in
normal service. They are still in common use
in stoves today.

THEY PUT VACUUM TUBES IN
CARS?

Even if you are too young to have ever used
them, most electronics people know what
vacuum tubes are. Compared to transistors,
they get hot, draw much more power, and
are a lot more susceptible to shocks and
vibration. They’re not something you would
expect to see in a car. However, car radios
were a popular option from the 1950s onward.
While transistors had been invented in 1947,
they were neither robust nor high enough
in performance to operate in car radios for
many years. So, for at least a decade or so,
vacuum tubes were used in car radios.

Vacuum tubes often use 12V for their
filaments, which matches the 12V car battery.
However, to operate efficiently, they need
at least 100VDC for their plate electrode.
Using a “B” battery (around 100V), which
was employed in old home radios, was not
practical in a car. So, the 12VDC battery
voltage had to be converted into AC, stepped
up using a transformer, and then rectified
back to a high enough DC potential to run
the vacuum tubes. It would be easier to do
this in today’s cars since alternators are now
used to charge the battery. Internally they
produce AC voltage which is rectified before

it leaves the alternator. That AC voltage could
feed a transformer directly, but automotive
generators of that era produced DC voltage
only.

Figure 3 shows a picture of the device
that made vacuum tube car radios possible.
It was called a vibrator. This one was made by
Cornell Dubilier, which was well-known for its
capacitors. I’m guessing Cornell Dubilier got
into the vibrator business because it already
used those cylindrical cans to house its power
supply electrolytic capacitors.

Figure 4 is a schematic diagram of the
circuit using such a vibrator in a car radio.
Basically, a vibrator is like a two-pole relay,
designed to handle being switched on and
off rapidly, and for a long duration. The
12V battery voltage is applied to two of the
vibrator’s four terminals. The current passes
through a set of N.C. contacts to the vibrator

Surface Unit

240 VAC

Bimetal Strip
Heater

Contoured
Cam

On-Off
Switch

Pilot Light
(neon)

SW1

SW2

FIGURE 2
This is a block diagram of an infinite
heat switch. In the text, I describe
how it operates.

FIGURE 3
This is a vibrator unit that was used
in early car radios to provide enough
voltage to operate the vacuum tubes
that were used in car radios at the
time.

CIRCUIT CELLAR • NOVEMBER 2023 #40044
CO

LU
M

NS

coil, which energizes it. Once energized, it
opens that N.C. contact, and the relay coil
is deactivated. This part of the vibrator acts
much like the old electromechanical buzzers
used in the past, except that here we don’t
want to hear the buzzing sound—therefore
the can surrounding this vibrator is sound-
insulated. I can’t recall the frequency that
these vibrators operated at, but it was
somewhere between 50 and 100Hz. The
second set of contacts is SPDT and basically
switches opposite ends of the radio’s power
transformer to chassis ground. With 12VDC
from the battery supplied to the center tap
of the primary, we are effectively supplying a
square wave AC voltage to the transformer’s
primary winding. The voltage from the
transformer’s high-voltage secondary is full-
wave rectified (by a vacuum tube rectifier, if
my memory serves me correctly) and filtered.

It speaks well of the engineers at the time
that they could design an AM radio that would
pick up distant RF signals clearly while in the
presence of electromagnetic interference
(EMI) from the spark plugs, distributor,
generator commutator, and the contacts
in the vibrator itself. Vibrators were not
expensive in those days and lasted for many
years.

SLOWLY DRIFTING AWAY
After learning about the automotive

vibrator in the last section, can you think of
another place where such an electromechanical
device could be used? Let’s consider industrial
process controllers, specifically ones in
which temperature is controlled—possibly
high temperatures in large ovens. The only
temperature sensors capable of withstanding
high temperatures—rugged and can work
with long signal leads—are thermocouples.

Thermocouples produce only low millivolt-
level signals even over a high-temperature
span. These tiny signals must be amplified
greatly before they can be used in some
form of PID controller. However, amplifying
a slowly changing DC signal by a large
amount requires a high-gain amplifier, with a
frequency response down to DC. Modern op-
amps with zero-drift features are common
today, but they weren’t 30-70 years ago when
such controllers were required. It was difficult
to design a high-gain DC amplifier that did
not suffer from some amount of drift over
temperature/time (especially using vacuum
tubes). This drift could severely affect the
accuracy of the controller, and many processes
are critical regarding process temperature.

If you instead consider a high-gain AC
amplifier, you can see that a multi-stage
amplifier (needed for high gains) can have its
stages coupled via capacitors. Any DC drift in
a particular stage will not pass through this
capacitor to subsequent stages. Therefore,
a good solution is to convert the low-voltage
thermocouple signal into an AC voltage,
amplify it with a high-gain, drift-free AC
amplifier, and then convert it back to DC again
at the output.

Today, such switching is generally done
using MOSFETs. They have fairly low RDS
values, and don’t generate any DC offsets of
their own (which would be meaningful given
the low voltages produced by thermocouples).
They can suffer from a phenomenon known
as charge injection, but this isn’t much of a
consideration at the low switching frequencies
needed for this type of application.

However, MOSFETs weren’t around back in
that era. Instead, if you consider the automotive
vibrator, it has all the attributes needed to
do the DC-AC conversion. In particular, it

FIGURE 5A,5B
These are two photos of choppers
used in early DC amplifiers. They
converted the DC voltage into AC,
where it was amplified by an AC
amplifier, and then synchronously
rectified back to DC using a separate
set of contacts.

SM-EP7
1

A
1

NC1NO1

C
1

N
C

2
N

O
2

C2

1

2

3 4

5

6

+
-

+
- +

1
2

 v
o

lt
 B

a
tt

e
ry

1
2

 V
A

C
 C

T

2
0

0
 V

A
C

 C
T

Chassis GND

H.V Transformer

Metal Can for RFI suppression
internal sound-insulation

100-150 VDC

FIGURE 4
This is a schematic diagram of the
high-voltage power supply used in
older car radios containing vacuum
tubes.

a)

b)

circuitcellar.com 45
CO

LU
M

NS

has basically 0Ω contact resistance when the
contacts are closed, and it doesn’t generate
any offset voltages of its own. And there’s
another bonus: If you add a second SPDT set
of contacts to the vibrator design, you can use
that set to synchronously rectify the AC signal
at the output of your AC amplifier. Again, no
offset voltage errors are introduced, as these
are only mechanical contacts.

In this case, such devices were called
choppers. Figure 5A and Figure 5B are
examples of such choppers. In a car, there
was only a DC voltage available, so the
vibrator needed its own set of contacts to
switch the coil on and off rapidly. My memory
is a bit hazy on this now, but I believe that
the chopper’s coil was fed an AC voltage and
the switching was performed at 60Hz (at least
here in North America).

I had some spare choppers in my lab,
which were used in chart recorders (another
device that needed to be able to amplify tiny
DC signals in a stable, drift-free manner).
They were somewhat smaller than the ones
shown in Figure 5. They didn’t turn my lab
into a museum when I retired, and in time,
all of these older parts were disposed of, so I
have no photos.

A LIGHTBULB MOMENT
I recently read that the USA is banning

incandescent light bulbs. Today, of course,
the media tries to make a controversy about
everything, so there is some confusion about
whether this is a ban or just new, stringent
energy efficiency regulations. One way or the
other, almost no one uses incandescent lights
for lighting any longer, since LEDs are cheap
and vastly more energy efficient.

Figure 6 is a photo of a miniature light
bulb like that which played a significant
role in the first product ever produced by
Hewlett-Packard—now a large multinational
conglomerate in the computer/electronics
industry. No, they didn’t start out producing
light bulbs. Instead, Bill Hewlett and David
Packard’s first product was an audio signal
generator which was initially manufactured
in David Packard’s garage in Palo Alto. You
can Google “HP 200A” for a photo of the
original HP 200A generator, but those photos
are not clear enough to meet Circuit Cellar’s
publishing standards.

High-quality audio signal generators were,
and still are, essential in the audio industry. In
particular, low waveform distortion and a wide
frequency range are required. Getting both
qualities simultaneously makes the design
more difficult, but the Wien bridge oscillator
configuration is one of the better choices.
Figure 7 is a schematic diagram of the Wien
bridge oscillator in HP’s original design. The

frequency-determining components are
R1,C1 and R2,C2, where R1=R2 and C1=C2.
Capacitors C1,C2 are two sections of an air-
variable capacitor and R1,R2 are switched by
the frequency range switch. The combination
of vacuum tubes V1 and V2 provides AC voltage
gain. For a Wien bridge oscillator, the gain of the
amplifier must be >3 for the circuit to sustain
oscillation. However, if the gain is too large, the
oscillator will saturate. But, even before such
saturation, the sine wave amplitude would not
remain constant if the gain changed.

Incandescent bulbs have a large positive
temperature coefficient. That is, the hotter
they get, the higher their resistance becomes.
For lighting purposes, this is a double-

FIGURE 6
This is a miniature incandescent
lamp like the one that was an integral
part of H.P.’s first product: the HP
200A audio signal generator.

FIGURE 7
This is a schematic diagram of the Wien bridge oscillator circuit used in the HP 200A audio signal
generator.

CIRCUIT CELLAR • NOVEMBER 2023 #40046
CO

LU
M

NS

edged sword. On the plus side, as the AC
mains voltage varies (from time of day and
load conditions), an incandescent bulb will
compensate, to a fair degree, in terms of
brightness. The downside is that the bulb’s
filament is always cold when you first turn it
on, and its lower cold resistance leads to a
momentary current surge at turn-on. That’s
why incandescent lamps often burn out right
after you turn them on.

From Figure 7, you see that the bulb is
placed in the cathode circuit of V1. The AC audio
signal is coupled to the lamp via R24 and pot
R25. When the signal amplitude increases, it
feeds more power to the lamp, increasing its
resistance. The higher the resistance present in
the cathode return path to ground, the lower the
gain of V1. This negative feedback, combined
with the particular characteristics of the R19
lamp, act to produce a constant amplitude
audio signal—even when switching ranges.

While there are other, more complex ways
of building a Wein bridge audio oscillator with
a constant output amplitude, none of these
alternative circuits are even close to the
simplicity and cost of the HP 200A’s light bulb
scheme. The HP 200A was granted US Patent
#2268872 in 1942.

Figure 8 is a photo of the somewhat newer
HP 200CD which uses somewhat different
circuitry from the original HP 200A design, but
still uses vacuum tubes and the incandescent
light bulb. There was one in my lab when I
arrived, which I used, and which was still
working when I left 30 years later.

THE GLOVES CAME OFF
I have another clever use of light bulbs.

In the Department of Chemistry at Dalhousie
University where I worked, there were
numerous glove boxes, like that shown in
Figure 9. In case you’re wondering, the gloves
don’t extend outward like that when you are
using them! The enclosure is hermetically
sealed and often filled with a gas other than
air—for chemical and/or safety reasons. The
gas used may be expensive, so for that and
safety reasons, it’s useful to be able to know
if there are leaks in either the enclosure or
the gloves themselves. If you cut a hole in
the glass envelope of an incandescent lamp,
you can operate it with something other than
the vacuum under which it’s accustomed to
operating. If this modified lamp were operated
in our normal atmosphere, containing oxygen,
it would quickly burn out due to oxidation
of the filament. You’ll have noticed this if
you’ve broken a light bulb that’s powered up.
However, many of the gases used with glove
boxes do not oxidize the lamp’s filament, so
you could power up this modified bulb in that
atmosphere and it wouldn’t burn out.

FIGURE 8
This is an HP 200CD audio signal
generator. It was a bit later model
of the HP 200A. I used one in my lab.

FIGURE 9
This is a glove box apparatus that is used in chemistry labs to handle chemicals either that are dangerous
to humans or that must be handled in an atmosphere made up of gas(es) different from Earth’s normal
atmosphere.

circuitcellar.com 47
CO

LU
M

NS

Figure 10 shows a simple schematic of such
a leak alarm. The 120V mains power is applied
to the incandescent bulb (a 120VAC 7W night light
bulb works well) through resistor R5. The AC
voltage across R5 is adjusted downward by pot
R3 to provide 2.0VDC after rectification/filtering
by D1 and C1. Under normal conditions, the
lamp is lit up and there is enough voltage across
R5 to turn the optocoupler on. Under these
conditions, the 2N3904 does not conduct and
the alarm buzzer doesn’t sound. If the glove box
leaks and lets in oxygen from the outside air,
the lamp quickly burns out and the optocoupler
shuts off. This raises the voltage on the base of
the 2N3904 and the SP1 buzzer sounds. Also, a
positive 5V can trigger an optional timer module
to start accumulating elapsed time. This allows
the glove box operator to know for how long the
proper gas atmosphere has been lost, and to
act accordingly.

Like HP’s audio oscillator, this design,
using a light bulb, is much simpler than other
ways of accomplishing the same function.
I built quite a number of these devices for
some of the many glove boxes that were used
in our chemistry department.

MECHANICAL ACTUATORS
Aside from robotics, there are many other

areas in which mechanical actuators are

needed to perform some physical function.
Depending upon the task, either stepper
motors or servomotors might be the best
solution. Linear actuators are another
common solution, but if they are electrically
driven (not pneumatic or hydraulic), they
would generally be driven by either a stepper
motor or a servomotor.

RAC03-05SK

2N3904
1

2

1

2

6

4

5

U1
R2

R3

VAC_IN(L)
1

VAC_IN(N)
4

+VOUT
3

-VOUT
2

PS1

R
4

-
+

S
P

1

1

2

R
5

D1

C1

R6

+

120 Vac

5V

5V

7-watt
night light

4
7
 o

h
m

s

1k

470

Glove-Box atmosphere

4N25

Timer Trigger

1N4148

10 uf

5V

47k

1k

FIGURE 10
This is a schematic of a simple glove
box leak detector based on a simple
miniature incandescent light bulb.
Like the HP 200A, it’s a novel use for
a simple light bulb.

https://omnionpower.com

CIRCUIT CELLAR • NOVEMBER 2023 #40048
CO

LU
M

NS

In almost all cases, you need some
positioning information fed back to the
controller. This sensor would often take the
form of a digital rotary encoder, or maybe
just a potentiometer if the motion was limited
to <360 degrees of rotary motion. Alternately,
a linear potentiometer could be used if the
motion was linear.

What if we add the criteria that there must
be some haptic feedback as well? In simple
terms, think of haptics as the controller needing
to know how much resistance the actuator
is encountering when it’s moving toward its
targeted position. Possibly add to this the
need for limit switches so the actuator doesn’t
destroy something when it tries to move beyond
some mechanical limit. Suddenly, the design
of the controller/actuator becomes quite a bit
more complicated. Modern controllers with
powerful MCUs and intelligent sensors can
handle this without too much difficulty. However,
before transistors and IC chips, controlling an
actuator electrically was difficult enough that
pneumatics/hydraulics were often used instead,
particularly in industry.

There was, however, one ingenious device
called the selsyn, invented back in 1925, that
handled all of the following:

• Physical motion (actuator)
• Position feedback
• Haptic feedback

Figure 11 is a photo of a small selsyn. It’s
configured like a small three-phase motor, with
an additional coil (terminals R1,R2) mounted
on the device’s rotor and connected externally
via slip-rings. Its mechanical rotary output
comes from the threaded shaft on the right.
The stator is made up of three Y-connected
coils (S1,S2,S3) spaced 120 degrees apart.
While a selsyn is a motor, it can equally act as
a generator. In fact, selsyns are always used
in pairs (one transmitter and one or more
receivers). Figure 12 is a schematic diagram
of a basic selsyn receiver-transmitter pair.
The transmitter’s S1,S2,S3 coils are connected
to like-named coils on the receiver. When an
AC excitation voltage is applied to each unit’s
rotor coil, it will induce a voltage in the three
stator coils. The phase of each of those signals
will be displaced by 120 degrees and will vary
as the transmitter shaft is rotated. These three
voltages are applied to the receiver, which will
cause the receiver’s rotor to move to match the
position of the transmitter.

Selsyns are commonly used to transmit the
rotary position of some remote mechanical
device to a receiver, which is configured with a
dial, allowing it to be read like a meter. This is
referred to as a torque system. However, you
can also use them as an actuator: a person
can rotate the transmitter selsyn shaft, and
the receiver selsyn will move to match that
rotational position. If the receiver encounters
some resistance in achieving that position,
that will be felt by the person rotating the
transmitter (haptic feedback). The amount
of torque developed by the receiver selsyn is
small—somewhat limited by the torque that
the operator can exert on the transmitter.
This is called a control system. Optionally, the
transmitter’s output signals can be amplified
and fed to a servomotor if a larger torque is
needed. During the Second World War, the
term selsyn was replaced by the term synchro.

As a teenager, I was fortunate enough to
get a truckload of electronic military surplus
equipment removed from the DEW line in
northern Canada. I was delighted to find a lot
of military-grade 6LC, 12AX7, 12AU7 vacuum
tubes, power transformers, and audio power
transformers. These all made their way into
guitar and hi-fi amplifiers that I built. I came
across a lot of selsyns as well, but didn’t know
what they were used for until much later in
life. There was no Google back then.

MUSICAL INSTRUMENT EFFECTS
PROCESSING

I mentioned my interest in guitar amplifiers
in the last section. From the 1960s onwards,
electric guitars and organs played a large role
in rock and popular music. Using only vacuum
tubes and early transistors, many sound

AC
Excitation

Torque Transmitter Torque Receiver

S1

S2S3 S3

R1

R2 R2

FIGURE 12
This is a schematic diagram showing how two synchros are wired together.

FIGURE 11
This is a selsyn unit—they were
later re-labeled “synchro.” Two such
units, wired together, can transmit
the rotary position of one unit to be
displayed on the other unit.

circuitcellar.com 49
CO

LU
M

NS

“effects” were invented back then that are
still popular and routinely used with electric
guitars and organs. In general, these fall into
four categories:

• Tremolo (amplitude modulation)
• Vibrato (frequency modulation)

• Phasor/flanger (phase modulation/comb
filtering)

• Reverb/delay (basically introducing echo
into the signal, over time)

Let’s examine the vibrato effect—
specifically as it was implemented in the

FIGURE 13
This is a photo of the tonewheel
generator as was used in the famous
Hammond B3 organ. The tonewheels,
which have “teeth” something like
gears have, are clearly visible, as are
the associated pickup coils.

LAUNCHING... WHAT’S NEXT!
Launching new technology is more complex than
ever. When it comes to navigating today’s design
and supply chain challenges, Avnet is at the heart
of it all. Whether you’re just starting on a design
or working to get your product to market, Avnet
delivers the right mix of technology and expertise
to help your business succeed. We deliver what’s
next in design, supply chain and logistics so you
can deliver what’s next for all of us.

Learn more at avnet.com

https://avnet.com

CIRCUIT CELLAR • NOVEMBER 2023 #40050
CO

LU
M

NS

famous Hammond tonewheel organs such as
the B3. Briefly, Hammond tonewheel organs
generate the frequencies needed for each note on
the keyboard (plus a lot of selectable harmonics)
using metal wheels, which are machined with a
sine-wave pattern along their circumference.
These wheels are rotated at a fixed speed
by a synchronous motor, and a pickup coil is
placed near the wheel’s circumference, which
generates a sine wave at a specific frequency.
Depending upon the model, there are 91 or
more of these wheels/pickup coils. That amount
is needed to produce the fundamental tones
for all of the notes within the keyboard’s range,
plus many user-configurable harmonics. Figure
13 is a photo of the tonewheel generator
assembly with the wheels and coils clearly
visible. This sound generation method is known
as additive synthesis and is still one of the best
synthesis methods available, even using today’s
complex digital integrated circuits. In Circuit
Cellar #328, I designed a Teensy MCU-based
Tonewheel organ synthesizer. There is much
more background on these organs contained in
that article (“Simulating a Hammond Tonewheel
Organ—Part 1: Mimicking a Mechanical Marvel,”
Circuit Cellar 328, November 2017) [1].

A big advantage of the tonewheel organ was
that every note was properly in tune, without
any adjustments needed, due to the fact that
the tonewheels were rotated by a synchronous
motor driven by the very accurate 60Hz power
mains. The downside of this is that there was
no easy way to introduce vibrato—a slow
modulation of the note’s frequency.

Today, with fast MCUs and large amounts
of RAM and such, we could take the digital
signal representation of a fixed-frequency
sine wave, and introduce vibrato as follows:

• Feed the digital sound samples into a large
circular RAM memory buffer.

• Maintain input and output buffer pointers
into that buffer.

• Slowly manipulate the position of the
output pointer with respect to the input
pointer in such a way as to introduce a
phase/frequency variation.

This is a bit of a programming effort
but quite doable with today’s MCU and
memory devices. But how would you do
this back in the 1930s when the Hammond
tonewheel organ was designed? Hammond’s
solution was quite ingenious. Figure 14 is
the electrical schematic for what was called
the Vibrato scanner. The electrical signals
representing the notes being played enter
at terminal 2, to the left. You can see that
there is a whole series of LC networks that
are series-connected. The time constant of
each of these LC networks is large enough
to introduce a significant phase shift to the
incoming signal. This phase shift steadily
increases as you move from left to right
in the LC network. At each “tap” of the
cascaded LC network, there is a signal that
goes to what is labeled the scanner. For now,
consider that to be a 16-position switch.
The scanner switch is rotated by the same
synchronous motor that turns the tonewheel
generator. As the scanner rotates, it will
select various taps of the LC network, and
the varying phase shift applied to the input
signal will be enough to produce a pleasant
vibrato effect. There is also a switch that
can select which switch taps are fed by the
LC network—this allows for various amounts
(depths) of vibrato effect.

Were the scanner to actually be a
mechanical switch, it would produce
frequency variations in discrete steps. Also,
the switch would have to be make-before-
break or the signal output would interrupted
with small intervals of silence.

Using a mechanical switch wouldn’t work
in practice. The digital vibrato solution, that
I presented above, would have thousands of
elements in the buffer array, making each
sample close together in time. Thus, you could
achieve a smooth vibrato response. Here we
only have 16 “switch” positions on the scanner
and that isn’t nearly enough resolution.

Figure 15 is a picture of the inside of the
Scanner. You can see that at each scanner
position, there is stacked a series of copper
plates. While not visible, the rotator part
of the scanner is also a series of stacked
copper plates, and is spaced between the
fixed plates. This forms an air capacitor
which results in basically a variable
capacitor between the rotator and each of
the 16 fixed scanner capacitors (three of
which are removed in this photo). As the
scanner rotates, it will smoothly mix in
various proportions from any two adjacent

Additional materials from the author are available at:
www.circuitcellar.com/article-materials

Reference [1] as marked in the article can be found there.

Signal input

Signal Output

FIGURE 14
This is a schematic diagram of
the vibrato circuit in a Hammond
tonewheel organ. The heart of this
circuit is the cascaded LC network
and its associated scanner switch.

http://www.circuitcellar.com/article-materials

circuitcellar.com 51
CO

LU
M

NS

FIGURE 15
This is a photo of the vibrato circuit’s
scanner. This is basically a “switch”
using capacitive coupling. See the
text for more details on why this was
so ingenious.

fixed scanner capacitors. This will provide a
smooth vibrato signal.

The capacitance of a small air variable
capacitor, such as those 16 found here, is
quite small. I don’t think that specification
is available, but I would estimate it to be in
the tens of picofarads. Given such a small
coupling capacitance, the impedance of the
amplifier following it must be high or there
would be poor low-frequency response. Since
they used vacuum tubes for the amplifiers in
these organs, the high-impedance criterion
wasn’t hard to meet. However, the shielding
of both the scanner assembly and the shielded
cable leading to the following amplifier had to
be good, or there would have been excessive
hum in the organ’s output signal.

The sound of Hammond tonewheel organs
was so exceptional that they produced about
2 million of them between 1935 and 1975.
Even though the newest of them would now
be 50 years old, many thousands of them are
still in use. They were originally designed for
churches, but I suspect that the remaining
ones are used mostly by rock/pop music bands.
If you ever had a chance to see the complex
mechanical components inside of one of these
organs, as I have, you would be astonished
to know that they were sold for about $1200
dollars when first introduced in 1935.

CONCLUSION
This article was intended as a special one-

off for the 400th edition of Circuit Cellar.
However, while looking back over the last 50
years in which I’ve been active in electronics,
I collected many other ideas/devices like the
ones described here—more than would fit
into one column. If there is reader interest, I
may sprinkle these other ingenious design
ideas into future Circuit Cellar editions. I hope
you enjoyed the trip back in time.

https://www.cc-webshop.com

CIRCUIT CELLAR • NOVEMBER 2023 #40052
CO

LU
M

NS

Embedded System Essentials Embedded System Essentials

How CHERI Helps Secure How CHERI Helps Secure
Your C/C++ CodeYour C/C++ Code

T his column normally covers how to
attack embedded systems. For this
special issue, I’m taking a step back to
look at how to build secure embedded

systems. Ultimately, it’s the goal of most
embedded engineers to improve their systems.
I talk about embedded attacks because
understanding attacks is an important step in
the process. But once you know the attacks,
what do you do next?

In this article, I’m going to introduce a
new technology called Capability Hardware
Enhanced RISC Instructions (CHERI), which
is an extension to microcontroller (MCU)
Instruction-Set Architectures (ISAs) that
builds in capabilities for fine-grained memory
protection and software compartmentalization.
The exciting thing about CHERI is that it
provides a way for you to take existing C/C++
code (which famously ends up with lots of
security vulnerabilities) and provide protection
against entire classes of attacks, including ones

I’ve shown you before. This means the “what
you do next” step may require little effort
beyond recompiling your code (and hoping your
RISC-V core has the CHERI extensions).

CHERI technology has been around for
a few years, and Arm has even built some
demonstration boards (called the “Arm
Morello”) that include this technology. More
recently, an open-source RISC-V specification
called CHERIoT was produced, and a
demonstration RISC-V core called CHERIoT-
Ibex was released which allows you to
experiment with this on an FPGA development
board. The technology is even easier to access
thanks to a new project called the “Sunburst
Project,” which will have a special-purpose
development board (the “Sonata Board”),
designed by yours truly. Watch the lowRISC
website for future details of this design. The
board design will be open-source, so you can
build one yourself if you’re handy with the
soldering iron!

Most embedded attacks either start with or end with illegal memory accesses. The
typical linear address spaces of most microcontrollers, combined with the many years
of non-memory-safe legacy C/C++ code, mean that this will be a threat for many years
to come. A newer technology called CHERI is trying to add memory safety to your
existing code, and a recent open-source RISC-V version called CHERIoT has turned it
into something you can experiment with today.

By By
Colin O'FlynnColin O'Flynn

On an FPGAOn an FPGA

circuitcellar.com 53
CO

LU
M

NS

ATTACK THE MEMORY
Before we dive into the details of what

CHERI is, let’s look at how the most common
embedded system attacks work. Most attacks
on embedded systems exploit improper
access to memory. This works in practice
because of two simple facts:

1. Most embedded systems have one memory
space containing everything.

2. Memory protection, if enabled at all, may
not be fine-grained enough to prevent
an attacker from reading (or writing)
sensitive data.

Buffer overflows are a good example of
a simple attack here. The basic idea of a
buffer overflow is shown in Figure 1. In a
buffer overflow, an attacker overwrites the
end of a buffer, which ends up writing data
onto the stack. This stack normally includes
return addresses, which allows an attacker
to change the control flow of the program.
In other cases, the attacker is able to write
executable code that the victim jumps to and
executes.

Other common attacks include reading
past the end of memory, or reading memory
they shouldn’t have access to. This might be
possible with logic flaws, such as improperly
checking the bounds of a request. But also
many of my fault injection attacks exploit
this, like when I showed you how I read the
private key from a Bitcoin wallet using a fault
injection attack. See my article in Circuit
Cellar #346 (“Attacking USB Gear with
EMFI: Pitching a Glitch” Circuit Cellar 346,
May 2019), or my paper “MIN()imum Failure:
EMFI Attacks against USB Stacks,” links
to both of which are available on Circuit
Cellar’s Article Materials and Resources
webpage [1][2].

All of these attacks are successful because
the processor executing a read (or store)
instruction has no context about what the
command should or should not have access
to. Generally, a low-level read (or store)
instruction has access to a huge range of
memory. Processors may have a secure and
unsecure (or privileged and unprivileged)
mode that provides some bounds, but it still
leaves the problem that a single flaw in the
secure mode gives access to the entire secure
memory space.

EVERYTHING OLD IS NEW AGAIN
In an alternate history, we never would

have these problems at all. A friend introduced
me to the (failed) Intel iAPX 432 processor
from 1981, a processor that was built with
object-oriented programming supported in
hardware. Circuit Cellar’s Article Materials

and Resources webpage includes a link to an
interesting article detailing this device [3].
It’s too much to cover in a few paragraphs.

The processor is described as “anti-RISC”
to set the stage for what comes next. As
an example of the complexity, the variable-
length instructions could be from 6 to 321
bits, and didn’t need to be stored byte-
aligned. All this complexity did buy you a fully
memory and capability-safe processor, long
before people were thinking seriously about
computer security.

Fundamentally, the iAPX 432 implemented
the idea of instructions operating on objects.
This means it was impossible to “read beyond”
memory, since memory existed only for the
given purpose. Like many failed good ideas,
the practical implementation left much to be
desired. The implementation choices resulted
in such excessive performance hits that it
simply wouldn’t survive in the marketplace.

Forty years later, CHERI offers memory and
capability-safe processors as well. But unlike
the iAPX 432, it offers it in a RISC format,
and with a minimal overhead. Work has been
done to ensure this overhead remains small
even with practical considerations, such as
how the DRAM refresh cycle impacts trying
to add memory tagging. This practical focus
is what makes CHERI exciting (and what
makes it unlike the iAPX 432)—it’s not just a
research project, but a complete set of tools
including specification, compilers, debuggers,
reference cores, and more.

TAG YOU’RE IT
When discussing the previous attacks,

it often comes down to: an attacker should
only be able to access a certain segment of
memory. A pointer should point to an 8-byte
buffer for example, but an error in the bounds
check logic lets them access memory beyond

FIGURE 1
Writing to or reading from memory
is a constant source of problems in
embedded systems.

CIRCUIT CELLAR • NOVEMBER 2023 #40054
CO

LU
M

NS

the end of the buffer. Or a user passes a
string to a print() call which is missing the
null, resulting in the print() call dumping
additional sensitive data.

One way to solve this is by using memory-
safe languages (such as Rust). These languages
provide the memory with protection as part of
the output of the compiled code, and provide
language syntax to use these features.

The big downside to using a memory-safe
language is it requires rewriting your code in
a memory-safe language. If you have many
years of legacy code to support, this can be
no small feat. Instead of doing this with the
compiler output, CHERI does this in hardware
with tags.

The tag format in Figure 2 shows that
the pointers being referenced suddenly have
a few extra fields. The inclusion of a bounds
field means an attacker no longer has access
to arbitrary lengths of memory. This bounds
is somewhat cleverly encoded to reduce the
bit-space needed, by using a “floating-point”
or “logarithmic” type encoding. That means
you have more precision at smaller boundary

sizes, but for larger blocks must pick the
closest boundary.

The validity tag is a single bit indicating if
the memory access should be used at all, and
the type and permission provide additional
granularity. Memory can be made read-only or
disallow execution through the permissions.

The validity tag in Figure 2 isn’t shown as
being in the same memory space, as it’s held
in an out-of-bounds memory. Modifying this
requires special instructions, which ensures that
an attacker cannot simply mark invalid memory
as valid. The validity tag is cleared by hardware
when capabilities become invalid as well.

Beyond memory safety, CHERI enables a
variety of other security features, including
that:

•	 It makes it easy to compartmentalize your
software so that tasks can only access
their own memory.

•	 It makes it possible to easily pass pointers
which allow read-only access (enforced
by the core itself and not just a polite
request).

•	 It can seal sections of memory to prevent
modification.

The best way to see these in action is
to look at a few examples, and I’ll use the
CHERIoT-RTOS project for that.

USING CHERIOT
The CHERIoT-RTOS project is a Real-Time

Operation System (RTOS) that supports CHERI
features to provide a high level of security.
To be clear, you don’t need to use CHERIoT-
RTOS to access the security features of
CHERIoT. But it provides a useful framework
for experimenting with CHERIoT.

The CHERIoT-RTOS repository includes
numerous examples of using the CHERI
extension. These can run on the CHERIoT
RISC-V core, be it an emulator or the real
CHERIoT-Ibex soft core which you can
program into an FPGA board. Soon this will
be even easier to experiment with on the
open-source Sonata Board, which includes all
required debugging hardware.

I’ll bring up a simple example so you can
get an idea of how the CHERI extensions work.
To start with, let’s look at simply printing
a few different strings. This is shown in
Listing 1, and recreates the hello.cc file from
the error-handling examples that are part of
the CHERIoT-RTOS repository.

You’ll see this includes three calls to the
write() function, which sends data out
the UART. The implementation is shown
in Listing 2. Note that there is no special
handling at all to check the validity of the
passed memory. The only call is one that

ABOUT THE AUTHOR
Colin O’Flynn (colin@oflynn.com) has been building and
breaking electronic devices for many years. He is CTO of
NewAE Technology based in Halifax, NS, Canada and was
previously assistant professor at Dalhousie University.
Some of his work is posted on his website at www.
colinoflynn.com.

Additional materials from the author are available at:
www.circuitcellar.com/article-materials
References [1] to [4] as marked in the article can be found there.

RESOURCES

lowRISC | lowrisc.org

FIGURE 2
CHERI adds bounds and capabilities to memory spaces.

Pointer Address
(32-bits)

Bounds
(22-bits)

Type
(3-bits)

Permission
(6-bits)V

MemoryValidity Tag

mailto:colin@oflynn.com
http://www.colinoflynn.com
http://www.colinoflynn.com
http://www.circuitcellar.com/article-materials

circuitcellar.com 55
CO

LU
M

NS

checks for a lock to prevent concurrent entry
(which would be common in most RTOSs).

If a memory error occurs, a handler can
capture that to print a useful debug message.
But it doesn’t require you to add any memory
safety check. The hardware provides memory
safety checking, which is the entire point of
CHERI.

Going back to Listing 1, the first call to
write() is missing the null terminator. This
results in the function attempting to read
beyond the allowed memory space, and it
shows how CHERI can help with this common
problem. The second call to write() shows
how CHERI’s capabilities give you more control
over how data is used. Here the passed string
doesn’t actually have read capability; it’s only
allowed to be used for storing data. Again,
the hardware prevents the write() function
from reading from this memory.

A SUNNY FUTURE
If the examples in this column have piqued

your interest, take a look at the CHERIoT
repositories to see all the details of both the
RTOS and core [4]. And watch the lowRISC
website for more about the Sunburst Project,

which will include the open-source Sonata
board to make it easy to run the sort of demos
I showed in Listing 1.

When it comes to practical usage, you’ll
of course need CHERIoT implemented in some
physical MCU. Right now, the answer to that
isn’t as clear—I don’t know of any commercial
MCUs planned with CHERI support. But
hopefully, with a few more accessible
examples, we’ll see it get picked up. But
the soft-core CHERIoT-Ibex that is currently
available has the advantage of not locking you
into a specific configuration.

CHERI is an exciting technology to me
because it doesn’t have to be turned on all at
once. If you have a CHERI-enabled MCU, you
can use your existing code almost as-is. From
there, improving the security can be done in
stages by adding in the additional features to
your code. To me this is the main advantage
of CHERI, and why it has a higher chance of
finding commercial relevance. It doesn’t
require you to rewrite your entire codebase at
once. For better or worse, it might give all
that memory-unsafe C/C++ code another
lease on life in a world where more people are
demanding security by design.

LISTING 1
The “hello.cc” file from 07.error_
handling example// Copyright Microsoft and CHERIoT Contributors.

// SPDX-License-Identifier: MIT

#include “hello.h”
#include <fail-simulator-on-error.h>

/// Thread entry point.
void __cheri_compartment(“hello”) entry()
{
 // Try writing a string with a missing null terminator
 char maliciousString[] = {‘h’, ‘e’, ‘l’, ‘l’, ‘o’};
 write(maliciousString);
 // Now try one that doesn’t have read permission:
 CHERI::Capability storeOnlyString{maliciousString};
 storeOnlyString.permissions() &= CHERI::Permission::Store;
 write(storeOnlyString);
 // Now one that should work
 write(“Non-malicious string”);
}

LISTING 2
The write function of “uart.cc”/// Write a message to the UART.

void write(const char *msg)
{
 LockGuard g{lock};
 Debug::log(“Message provided by caller: {}”, msg);
}

CIRCUIT CELLAR • NOVEMBER 2023 #40056
CO

LU
M

NS

From the BenchFrom the Bench

Cellular, The Forgotten Wi-FiCellular, The Forgotten Wi-Fi

W hen I got my first Motorola
flip cell phone, it was like Star
Trek come alive. The Star Ship
Enterprise’s communicator

was similar in size. I installed a sound
clip to imitate the familiar opening of the
communicator when I opened my Star Tac flip
phone. In the beginning you couldn’t call to
the next town with out incurring toll changes.
When you left your cell network coverage,
there were extra roaming charges. Today we
have unlimited calling, text, and data plans.
Streaming your favorite movie/series requires
a rather large bandwidth of streaming data.
Everything today is data-oriented.

In my September 2023 article (”Local
Isolation: Using the Sun’s Energy,” Circuit
Cellar 398, September 2023) [1], I described
a low-voltage solar energy system I built for
lighting my Scout troop’s large storage shed. I
described the battery I chose, and the Modbus
protocol with RS-485 serial communication
used for remote monitoring of the system’s
performance (”sniffing” or listening to

communication on the bus, and decoding
each message). Then, in my October article
(”Local Isolation Using the Sun’s Energy: Part
2: Modbus Client,” Circuit Cellar 399, October
2023) [2], I expanded on this node’s ability
to do more than just listen and decode.
This month, I discuss my use of a modern
module, to make use of cellular networks for
communication.

I initially considered repurposing an older
cell phone to make a connection with the
”Eagle’s Nest” solar project. However, the
monthly fee for that would be greater than
$100 a year. While that would certainly make a
worthy project, there are much less expensive
options today. Like the Wi-Fi transceivers that
allow us to connect to a wireless network at
home, modules are now available to make use
of the cellular networks that are growing in
connectivity everywhere. The data bandwidth
we need for most applications is extremely
low. We can therefore take advantage of the
cellular system without the steep monthly
charges.

In Parts 1 and 2 of this series, Jeff introduced us to a novel
method of providing light in a meeting place located in a
remote area without electricity, by using a low-voltage solar
energy system. Last month he described the use of Wi-Fi for
communicating the system’s performance. In Part 3, he uses
NoteCard, a cost-effective embeddable cellular module for
sending data to his home from a remote area.

By
Jeff Bachiochi

Part 3: Using NoteCard, an Part 3: Using NoteCard, an
Embedded Communications ModuleEmbedded Communications Module

circuitcellar.com 57
CO

LU
M

NS

RED, WHITE, AND BLUES
One of the companies that provides this

service is Blues Inc. [3]. Let’s start with
development tools. These are divided into two
parts: the ”Notecard” and the ”NoteCarrier.”
The Notecard (Figure 1) is an embeddable
communications module; it has all the
necessary hardware to handle global cellular
communications over LTE-M, NB-IoT, or Cat-
1. The NoteCarrier is a prototyping PCB that
contains a socket for the Notecard and for a
microcontroller (MCU).

While you can put a NoteCard on your own
circuitry and save some more cash, I will
take advantage of the NoteCarrier, because it
supports a 24-pin Adafruit Feather breakout
header. You’ll recall that I have been using the
Adafruit Huzzah 32 module for this project
since day one! If you want to use this with
other MCUs, there are breakout points for
every necessary connection to the NoteCard.
NOTE: The newer starter kits feature a
Feather-compatible MCU, the Swan, based on
an ARM Cortex-M4.

The NoteCard can provide communications
via one or more of these data networks,
LTE-M, NB-IoT, GPRS, LTE Cat-1, and WCDMA.
I am using the LTE CAT-M NoteCard for North
America, which is perfect for medium-
throughput applications requiring low power,
low latency, and/or mobility, such as asset
tracking, wearables, medical, POS and home
security applications. In my application, I
have power via solar, but no Internet. Cell
coverage in the area makes this solution
possible. Let’s see how the NoteCard/Carrier
combination is used.

To complement this hardware, Blues Inc.
has a cloud-based site (”NoteHub”) that
communicates with the NoteCard and syncs
data both to and from the NoteCard. Last
month’s project ended with our Modbus

data sent via Wi-Fi to a MQTT server, using
JSON objects [2]. At the time, you may have
been thinking that there may have been
better ways of sending this data. That was
actually a setup for this month’s use of the
cellular service. A JSON object is simply a
way of passing data in a readable form, as
in {solarPower:4}. While an object can
contain multiple messages separated by
commas, this single message indicates the
variable solarPower is equal to a value of
4. On the NoteCard end we have functions
that can be called to pass and retrieve data.
Data from NoteCard is placed into a NoteFile
(.qo extension) on NoteHub, and once
received is added to a NoteFile with a .db
extension. Data from a NoteFile with a .qi

FIGURE 1
The NoteCard contains a complete cellular and GNSS (Global Navigation Satellite System) you
can use in your own circuit or in a NoteCarrier via the M.2 high-density (0.5mm pitch) edge
connector.

FIGURE 2
Only 6 (4) connections
from NoteCarrier are
required to interface
with the RS-485
converter. The solar
energy system used
Modbus (using RS-
485) for inter-module
communications.

CIRCUIT CELLAR • NOVEMBER 2023 #40058
CO

LU
M

NS

extension on NoteHub is sent to the NoteCard
on any sync.

One powerful feature of NoteHub is event
routing, which allows one to forward data
from NoteHub to a public/private cloud,
including AWS, Azure, Google Cloud, a
messaging platform like MQTT, or a custom
HTTP/HTTPS endpoint. Note that MQTT is
supported. Let’s take a step back and look at
how our solar project is now configured to
use the NoteCard.

NOTECARRIER
I’m using a NoteCarrier-AF for this project.

The present offering, the NoteCarrier-F, is just
a slight variation of this, it uses an external
antenna, for instance. The Huzzah32 plugs
into the Feather socket. We can continue to
use the RS-485 converter described the initial
project column [1]. This only needs a 6-wire
connection to the NoteCarrier-F. Note that the
schematic (Figure 2) consists of adding the
RS-485 chip to the NoteCarrier, so that we
can make the Modbus connection to the Eagle
Nest’s solar system.

Since I am using the Huzzah Serial1port
for Modbus and the serial USB port is being
used as the debug port, I will be using the
I2C interface to the NoteCarrier/Card. Either
serial or I2C can be used to communicate
with the NoteCarrier-F. All connections
between the Note Card and my Huzzah 32
are made through the NoteCarrier. I just
added the six connections to my RS-485
circuit module [1].

You will need to install the note-arduino
library available on Blues GitHub page [5].
This library gives the user about a dozen
functions. For this project we’ll only use
six. Like many libraries, one of the first
functions you place in the setup() function
is Notecard.begin(0x17, 0x20, Wire).
The parameters for this function define
whether the NoteCard interface will be via a
serial port or I2C; here the setup is for the
I2C interface. Once I’ve started the primary
serial port with Serial.begin(115200),
I can command the Notecard to use this
port for debug messages with Notecard.
setDebugOutPutStream(Serial).

All communication between our micro
and the NoteCard will be JSON objects. We’ve
already used JSON objects in our Arduino
code to identify a register source and its
value. Objects are a group of one or more
members (name:values pairs), surrounded by
braces, {}. An object with multiple members
are separated by a comma.

The purpose of the NoteCard is to form
a communication path between our micro
and the NoteHub, which is the cloud-based
receiver of our cellular data. We need to
inform NoteHub who we are and how we will
communicate with it. This is accomplished
by creating a JSON object. A hubRequest
command is used to configure and monitor
the connection between the Notecard and
Notehub.

J *req = Notecard.newRequest(”hub.
set”) ;

will initialize this object with a member
identifying the command.

Next, we can add some JSON members
to the object. The second member
identifies us and ties us to our specific
NoteCard, JaddStringToObject(req,
”product”, myproductID). The string
variable, myproductID, will be discussed
further in the NoteHub section to follow.
Next we’ll configure how the communication
channel will be used by defining the ”mode”,
JaddStringToObject(req, ”mode”,
”continuous”). There are basically two
modes: ”periodic” (default) and ”continuous”.
Periodic is used to keep NoteCard in a low
power mode (µA) and connect with NoteHub
periodically. The continuous mode (tens of
mA) keeps a communication path open for
immediate transfer of data. In either mode,
the current draw is 250mA when the modem
is active. I’ll be transferring data once per
minute.

We have a complete command (JSON
object) built now, and it looks like this:

{
 ”req” : ”hub.set”,
 ”product” : myProductID,
 ”mode” : ”continuous”
}

We are now ready to send this JSON object
to the NoteHub. The sendRequest function
handles this. Initially, we are coming out of a
power-up, and we don’t know if the NoteCard
has finished all of its initialization (it has its
own application to execute). If we ask it to
send a request to NoteHub before it is ready, it
could fail. We can either check for that or use
the sendRequestWithRetry function. I’ll

ABOUT THE AUTHOR
Jeff Bachiochi (pronounced BAH-key-AH-key)
has been writing for Circuit Cellar since 1988.
His background includes product design and
manufacturing. You can reach him at:
jeff.bachiochi@imaginethatnow.com, or at:
www.imaginethatnow.com.

mailto:jeff.bachiochi@imaginethatnow.com
http://www.imaginethatnow.com

circuitcellar.com 59
CO

LU
M

NS

let the NoteCard handle any error and use the
function sendRequestWithRetry(req, 5).
This will retry the send command every 5
seconds.

Let’s take advantage of the NoteCard’s
time service. Once it has completed a sync
with NoteHub, it will have a reference epoch
(number of seconds since January 1, 1970.)
This requires a second JSON object, one
that holds the response from the NoteCard.
The command J *rsp = Notecard.
requestAndResponse(Notecard.
newRequest(”card.time”)) is used to
initialize the rsp object to the response of the
function. The NoteCard’s card.time function
returns an object containing multiple members.
We want the member ”time” : reference
epoch, where reference epoch is a number
(signed 32-bit integer). This number can be
easily extracted from the object using the
command myEpoch = JgetNumber(rsp,
”Time”). After we have what we want, we
can delete the rsp object from the NoteCard
with Notecard.deleteResponse(rsp). I
adjust myEpoch for my local time zone. I’m
using the TimeLib.h to handle the time on
the Arduino.

We’re now finished with all the necessary
NoteCard initialization in the Arduino’s
setup() function, so it’s on to the loop()
function where we have previously gathered
data via the Modbus connection to the solar
system. We don’t have a lot of things to do in
our loop() function. We do need to decide how
often to request data from any of our devices in
the solar system. The variable sampleDelay
constant determines this timing, and our

function requestRegisters() asks for
20 registers in the solar controller, starting
with register address 0x100. Besides
requesting data in a timely fashion, our loop
also checks for any activity on the Modbus
(excluding any requests we make). If we
have activity, hopefully a response to our
request, we call the mbProcess() function
to dissect the response. If this response was
due to our request, the data is placed into
the appropriate group of defined variables.
Our previous programs have initialized local
holding registers for every piece of data we
might be interested in from any of the devices
connected on the Modbus. For this program
we are interested in just 20 of these.

With data collected, we are now ready
to have this data transferred via cellular
communication to the notehub.io cloud. We’ll
use the now familiar newRequest function
to handle this. The last request was for the
hub.set command, now our JSON object
will use the note.add command, J *req
= Notecard.newRequest(”note.add”).
We’ll add a sync member to the object,
JaddBoolToObject(req, ”sync”, true)
to force the NoteHub to handle this immediately.
Then all our data is added as additional
members, which will all be sent in one fell
swoop (Listing 1).

When we’ve added all the data we want
to include, we issue a command to send the
data, Notecard.sendRequest(req). You
may have noticed that the member data was
added to ”body” and not to ”req” as in our
hub.set command. This alters the JSON
object by adding a member ”body” that is

JAddNumberToObject(body, “batterySOC”, batterySOC);
JAddNumberToObject(body, “batteryVoltage”, batteryVoltage);
JAddNumberToObject(body, “batteryCurrent”, batteryCurrent);
JAddNumberToObject(body, “controllerTemperature”, controllerTemperature);
JAddNumberToObject(body, “batteryTemperature”, batteryTemperature);
JAddNumberToObject(body, “loadVoltage”, loadVoltage);
JAddNumberToObject(body, “loadCurrent”, loadCurrent);
JAddNumberToObject(body, “loadPower”, loadPower);
JAddNumberToObject(body, “solarVoltage”, solarVoltage);
JAddNumberToObject(body, “solarCurrent”, solarCurrent);
JAddNumberToObject(body, “solarPower”, solarPower);
JAddNumberToObject(body, “batteryCumulativeChargeHours”, batteryCumulativeChargeHours);
JAddNumberToObject(body, “batteryCumulativeDischargeHours”,
batteryCumulativeDischargeHours);
JAddNumberToObject(body, “solarCumulativePowerGenerated”, solarCumulativePowerGenerated);
JAddNumberToObject(body, “solarCumulativePowerConsumed”, solarCumulativePowerConsumed);

LISTING 1
This is where each variable is added to the JSON object body. Each member will contain the variable name and its value.

CIRCUIT CELLAR • NOVEMBER 2023 #40060
CO

LU
M

NS

an array of the data. Because I enabled the
debug port, we can see this sent to the USB
serial port (Serial). See Listing 2.

Note the JSON object contains four
members: ”req,” ”sync,” ”body,” and ”crc.”
The member ”body” has an array of members
associated with it. The ”crc” member ensures
that the data is transferred without error.

So far in this project, I’ve collected data
from the solar system installed in Troop
96’s equipment shed, which is off the grid.
Because we have no way of monitoring the
system, except for a Bluetooth app on my cell
phone—which only works while I’m near the
shed—a cellular connection was added. My
MCU, which collects the data, is interfaced
with a Blues Inc. NoteCard, which is now
sending the collected data to NoteHub.io,
Blues’ cloud service [4]. Let’s now see what
NoteHub.io does with this data.

NOTEHUB
When you purchase a NoteCard, you get

hardware that you can immediately power up,
and follow an online tutorial on how to set
up your NoteCard and connect to it from the
web browser. Open the Blues.io webpage for
NoteCard quickstart and NoteCarrier-F [6].
You will get an error message if your browser
is not supported. A supported web browser (

FIGURE 3
The NoteHub Quick Start Tutorial will guide you to quickly get connected using your NoteCard/NoteCarrier without the need to write any code. This is a great way to
get some hands on experience with the hardware before you begin writing your application.

{
 “req”:”note.add”,
 “sync”:true,
 “body”:
 {
 “batterySOC”:0,
 “batteryVoltage”:0,
 “batteryCurrent”:0,
 “controllerTemperature”:0,
 “batteryTemperature”:0,
 “loadVoltage”:0,
 “loadCurrent”:0,
 “loadPower”:0,
 “solarVoltage”:0,
 “solarCurrent”:0,
 “solarPower”:0,
 “batteryCumulativeChargeHours”:0,
 “batteryCumulativeDischargeHours”:0,
 “solarCumulativePowerGenerated”:0,
 “solarCumulativePowerConsumed”:0
 },
 “crc”:”0002:98F82C2C”
}

LISTING 2
You can see a copy of the complete JSON object that's sent via the debug serial output on the
HUZZAH32 micro. Once connected to the solar system's modbus, these values will be pulled from
the solar controller.

circuitcellar.com 61
CO

LU
M

NS

Chrome, Opera, or Edge) will connect directly
to the NoteCarrier USB port and manipulate
the NoteCard directly with it, as if you had
a MCU attached to it. This initial connection
with the USB cable is used for the tutorial to
make it easy to experiment with the Noteard/
NoteCarrier kit right out of the box.

When you connect the NoteCarrier via USB
to your PC, it should be recognized as a new
serial port connection. You can now connect
to it, and you should see some messages just
under the green bar in the upper right of the
screen (Figure 3). The NoteCard is directed
to make contact with NoteHub. Once its sign-
in is complete, you should see a sign-on
message:

Welcome to the Notecard In-Browser
Terminal.
Start making requests below.
(For advanced info, use the ‘help’ command.)

~ Connected to serial
~ DeviceUID dev:864475044208469 (NOTE-
NBGL500) running firmware 5.1.1.16026

 Your NoteCard’s UID is shown along with
the revision of the firmware running on the
card. Now you can enter commands. The
quickstart suggests entering the following
command:

{”req”:”card.version”}

You can copy this into the input terminal
at the lower right. Click on ”>” to send the
request. You’ll note that the response is in
JSON format, and the info is the same as the
sign-on message.

New users are required to set up an
account on NoteHub. Under the heading ”Set
up Notehub,” see ”Create a Notehub Project”
and click on ”Notehub Project Dashboard.”
The quickstart guides you through this by
opening a new browser window (NoteHub.
io), where you can enter your name, email
address, and a password. When you have
completed this, you are ready to create a
project. Click on ”+Create Project’” and add
a project name such as ”quickstart” to the
New Project card. Note that you are given an
account and a UID prefix. The product UID
becomes the product UID prefix plus the
project name. Remember that earlier, we
initialized a variable product_UID in our
Arduino sketch? This project’s ”productUID”
is what you will use to define that product_
UID, so your application will be associated
with the NoteCarrier/NoteCard, theNoteCard/
NoteHub communication channel, and this
project on NoteHub. When you’re happy with
the information, click on ”+Create Project”

and your browser will go to your project page.
Make note of the ”ProductUID” here, and
with it you can continue with the quickstart
by entering the following command into the
input terminal:

{”req”:”hub.set”, ”product”:”com.
your-company.your-name:your_
product”}

Then substitute your productUID
for ”com.your-company.your-name:your_
product” in the right-hand member of the
JSON pair. When the command is sent you
will see the command and response in the
output terminal. A no-error response is sent
as ”{}”. You can switch back to the Blues.
io tab and go on with quickstart entering
commands including:

{”req”:”note.add”,”body”:
{”temp”:35.5,”humid”:56.23}}

At this point, we’ve requested the
NoteCard to send some data to our project in
NoteHub. Go back to the NoteHub.io tab and
click on ”events.” You should now see a list
of events or communiques you requested via
the NoteCard. Select an event and click ”view”
to see the event data. The last command sent
was typical data. This is saved as an event in
the .qo file. If you select that event and view
it, you will see this event’s data under the
”Body” tab (Figure 4).

You should investigate all the different
screens available on your project’s page,
and become familiar with how things are
presented, because we will be coming back to
this shortly. You should also experiment with
sending other commands using the terminal
in the Blue.io window.

FIGURE 4
The tutorial shows you how to send data from your NoteCard/NoteCarrier to NoteHub and see the
actual data arrive as an event.

CIRCUIT CELLAR • NOVEMBER 2023 #40062
CO

LU
M

NS

FIGURE 5
My application data wants to eventually end up being sent to my Raspberry Pi, running an MQTT server. NoteHub can be used to route events to an external data sink.
My choice is MQTT, and NoteHub makes it happen by answering a few questions.

FIGURE 6
Events are routed by NoteHub to my Raspberry Pi. I'm using Node-RED to take each MQTT packet sent and split the JSON object into individual members.

circuitcellar.com 63
CO

LU
M

NS

THE REAL THING
We have enough information to proceed

with our project. My Huzzah 32 MCU is
chomping at the bit to be programmed
with this latest application and be placed
on the NoteCarrier’s ”Feather Headers.” We
discussed the additions to an application
to support NoteCard/NoteHub. These have
been added to our project from last month
[2]. The use of Wi-Fi last month, as part
of the ESP32 MCU, is now replaced by the
NoteCard’s cell service communication. Using
the Arduino IDE, this new application can
now be programmed into the micro. Upon
power up, the Huzzah’s application makes
itself known to the NoteCard. This NoteCard
(NBNA-500) uses a Quectel BG95-M1 modem,
which covers the LTE_M Data Networks in
United States, Canada, and Mexico. (See other
models for global coverage.)

Our product on Notehub.io is receiving
our data periodically, based on the constant
reportDelay, once an hour. However
samples are taken periodically, based on
the constant sampleDelay, here every 10
seconds. Each sample is saved along with a
running total, so that when reported once an
hour, the average sample is reported. The
equation for the first register of interest,
batterySOC, is:

batterySOC = batterySOCTotal/
sampleCount;

This is handled in the averageTotals()
function prior to adding the data members
to the ”body” object. A final command,
notecard.sendRequest(req), will
request our NoteCard to send our data to
NoteHub.

Assuming this has happened and it has
arrived as an event, we need to get the events
routed to the Raspberry PI installed on my
home network. Click on the route tab and then
the ”+Create Route” button. Here is a list of
the routing destinations you can choose from.
Each has a tutorial to help you if necessary.

• HTTP/HTTPS endpoints
• AWS
• Azure
• Google Cloud function
• MQTT
• PROXY
• ThingWorx
• RadResponder
• snowflake
• twillo
• Edge Impulse
• slack
• amazon S3
• Datacake

In this case, I am going to choose MQTT.
This leads to the MQTT configuration page in
Figure 5. Here you can give your route a name.
Only two other items are required, Broker URL,
and Topic. The Raspberry Pi is on my local
WAN, so I can go to my Modem/Router and find
my actual IP address. While this is not a static
IP, I found it is not likely to change unless you
change service provider. You can always use
a dynamic DNS (Domain Name Server), if you
want to have a static name served to your
dynamic IP, like No-IP.com

Topic defines the topic for each messages
routed (forwarded to my Pi); the payload
will be your event data. I use the [product]/
[device] which substitutes my ProductUID ”/”
DeviceUID as the topic. These can be found
on the Device tab by double clicking on the
appropriate device. You’ll need this for the
MQTT IN node in your Node-REDflow [7]. Last
month I used the Huzzah’s Wi-Fi and showed
how, if your system was in range of Wi-Fi
service, you could send the data directly to
the MQTT server. There is little to change to
that Node-RED flow. The difference is in how
the data comes in.

In the Wi-FI project [2], each JSON object
contained one member (name/value pair) per
packet. NoteHub will route the whole event,
consisting of multiple members (including
more than just the data), in one packet. You
can see most of this in Node-RED in the debug
panel on the right of Figure 6. We just need to
change the Topic in the MQTT In node to the
one used in the NoteHub MQTT setup. Because

FIGURE 7
Each of the 20 variables pulled from the Solar Controller via the Modbus and recorded by the Huzzah
32 are transferred to the NoteCard and sent to NoteHub. There you can see an event's body contains
20 members (name/value pairs).

CIRCUIT CELLAR • NOVEMBER 2023 #40064
CO

LU
M

NS

each event sent to NoteHub from NoteCard
contains all our data in a single packet, the
event is routed to our MQTT server all at
once. If you viewed an event on NoteHub
(events, click on an event, then view), you
can choose ”body”, to see the data members
(Figure 7), or ”JSON” to see the complete
event information. Note that the JSON object
contains multiple members (name/value
pairs), one of which is ”body.” This member
has an object as its value. The ”body” object
contains multiple members, our data

All of this is sent to the MQTT server,
so each event will need to be disassembled
into separate messages. The first split node
divides the single message into multiple
messages. If enabled, Debug 20 will show
the separated messages in the debug panel
on the right. They are ”event,” ”session,”

”best_id,” ”device,” and so on. Note that the
message ”body” contains all of our data.
The second split node divides the ”body”
message into separate messages, as can be
seen using debug 12. Now we have a whole
lot of individual messages, just like the ones
sent using Wi-Fi in last month’s project. The
”switch’” node routes only those that are our
data messages to separate outputs, where
they can be massaged and displayed on the
Node-RED dashboard (Figure 8).

COST OF SERVICE
Today you can get a starter kit for North

America for $99 or the EMEA (Europe, Middle
Asia, and Africa) starter kit for $109 from
Blues.io. This includes NoteCard, NoteCarrier,
Swan (Feather-compatible micro), and 10
years of cell service! The cell service includes
500MB of free cellular data and 5,000 free
Consumption Credits. Yup! For about a
hundred bucks you can get started with a
cellular connection that will give you up to 10
years of service. Renewals and extra data are
equally valued.

So how can Blues make any money on this
stuff? Naturally, offering a development kit
and service at such a low cost removes any
initial hesitation to try out their hardware.
Their real income will come from reoccurring
revenue. This is measured by cellular data
limit and the consumption credits (CC). Each
of my events is about 1.5KB. If we divide the

Additional materials from the author are available at:
www.circuitcellar.com/article-materials
References [1] to [7] as marked in the article can be found there.

RESOURCES

Adafruit | adafruit.com

Arduino | www.arduino.cc

Blues, Inc. | blues.io

Node-RED | nodered.org

Renergy, Inc. | renergy.com

FIGURE 8
Once Node-RED has received the MQTT JSON packet and split it into individual members, each members is sent to the appropriate chart or textbox for display on
the Node-RED Dashboard.

http://www.circuitcellar.com/article-materials
http://www.arduino.cc
https://www.adafruit.com
https://blues.io
https://nodered.org
https://renergy.com

circuitcellar.com 65
CO

LU
M

NS

cellular data cap by my event packet size
we get 500,000,000B/15,00B = >300,000
messages. If I sent this every minute, that
would be ~200 days. Cellular data and CC are
renewed each month, so I should never run
out. You can think of consumption credits as
NoteHub requests, of which an event route
costs 1 credit, that would be 5,000 routes.
Again, if we send an event every minute, that
would be 60 minutes * 24 hours * 31 days =
44,640 routes per month. That is a bit over
our 5,000 CC budget. 40,000 extra CC’s cost
about $30. If you limited the routes to every
10 seconds, you would stay under budget.
You’ll notice I’m only updating things once an
hour so that’s only 24 routes/day * 31 days
= 744 routes/month. It’s easy to see that in
some applications you may need to purchase
additional credits.

UNCOVERED
There are so many things that I have not

covered here. I think if you are at all intrigued
by this, you should visit the Blues website
and look a little deeper. I’m not sending any
data to the NoteCard from my Pi. This cellular
solution is closed loop, and can be used for
both monitoring and control. So I could be
using the cellular connection to say, turn ON/

OFF the power to the lighting units, but at this
point there is nothing I want to control at the
shed. You’ll be fascinated with some of the
applications listed on the Solutions tab of the
Blues website.

If you are contemplating any kind of
project that won’t have a permanent home
on some Wi-Fi network, you should consider
using cellular communication. You don’t have
to fool around with connection requirements
of SSID and security key each time you move
to a new location. You may have noticed that
one of the object members returned in the
MQTT packet is the longitude and latitude
of the cell tower picking up our cellular
transmission.

Once you have learned the fundamentals
by following the tutorials, you will find it easy
to tack this cellular system onto any project.
I’m excited to get to use the new solar lighting
system in our Troop’s shed. We’re starting up
regular meetings again after the summer
break. Our first meeting is this Monday night,
and with the sun beginning to set earlier each
night, having adequate lighting will surprise
everyone. Everything is in place just in time.
I’ll be adding weekly meetings and monthly
camp outs to my fall schedule. Yep, there is
too much to do and so little time.

2nd Generation DC-DC
Down Converter
The 700DNG40-24-8 is a compact
and lightweight 4kW liquid-cooled
DC-DC converter known for its
exceptional efficiency and reliability.
It is specifically designed to support
the DC voltage needs of hybrid and
electric vehicles, making it ideal for
powering various low-voltage
accessories in these vehicles.

belfuse.com/power-solutions

https://belfuse.com/power-solutions

CIRCUIT CELLAR • NOVEMBER 2023 #40066
PR

O
D

U
CT

 N
EW

S

PRODUCT NEWS by Kirsten Campbell

NEW PRODUCT SUBMISSIONS— E-mail: product-editor@circuitcellar.com

ARTERY Introduces Its First Automotive-Grade MCU to Power Next-Generation Vehicles
ARTERY Technology launched its first automotive-grade

microcontroller AT32A403A. Certified according to automotive
standard AEC-Q100 Grade 2, and passed qualification tests
including accelerated environmental stress test, accelerated
lifetime simulation test, package assembly integrity test and
electrical verification test.

Automotive-grade chips have the top priority of ensuring
driving safety must pass a whole set of qualification tests for
automotive applications according to the industry standard
specification developed by Automotive Electronics Council (AEC).

AT34A403A—AT32A403A series is based on ARM 32-bit
Cortex-M4 core that embeds up to 1MB Flash memory and 224KB
SRAM, operating at a frequency of up to 200MHz. Powered by 2.6-
3.6V voltage and can operate in a wide operating temperature
range from -40°C to 105°C, meets the high computing power,
high stability, and high reliability requirements of automotive
electronics.

AT32A403A integrates rich peripherals to enhance the
connectivity of diverse communication interfaces. It features
8x UARTs, 4x SPIs, 3x I2Cs, 2x I2Ss, 2x SDIOs, XMC, 2x CANs,
SPIM, USB 2.0 FS interface supporting Xtal-less mode, 8x 16-
bit general-purpose timers, 2x 32-bit general-purpose timers,
2x 16-bit motor control PWM advanced timers with dead-time
generator and emergency brake, 2x 16-bit basic timers to drive
DACs, 3x 12-bit 2 Msps A/D converters with up to 16 channels.
Almost all GPIO ports are 5V tolerant. The AT32A403A series
is especially suitable for IoT applications, leading to higher
reliability and lower cost in terminal products.

Intelligent Application of Automotive MCUs: Along with
the development of smart cars, on-board displays have been
digitalized to realize human-vehicle interaction with gesture
controls and even voice controls, instead of traditional mechanical
buttons. With powerful on-chip resources, higher integration,

cost-effectiveness, and safety functions adhering to automotive-
grade MCU standards, the AT32A403A series is considered the
preferred choice for automotive applications such as advanced
driver assistance systems (ADAS), automotive body control,
anti-theft security devices, digital dashboard, automotive motor
power supplies, automotive lighting, and automotive battery
management system (BMS). It can even be applied to the in-
vehicle infotainment (IVI), Shy Tech and AR HUD to enrich audio-
visual experience and intelligent human-machine interaction.

Artery Technology is committed to creating automotive grade
MCUs that are in line with the development trend of intelligence
and digitalization and meet high performance and high safety
standards. AT32A403A currently supplies a total of 12 models in
4 different packages and 3 kinds of Flash memory architecture
to create highly reliable automotive MCU solutions and accelerate
the popularization of intelligent new energy vehicles. ARTERY will
also continue to expand the automotive microcontroller market,
and provide customers with better services and richer products.

ARTERY Technology | arterytek.com

Saelig Debuts Economical 12-bit Rigol DHO 800/900 Oscilloscope Series
Rigol’s newest high-performance 12-bit economical digital

oscilloscopes are portable and offer high-resolution, a capture
rate up to 1,000,000wfms/s, up to 50Mpts memory depth,
and an ultra-low noise floor that allows the detection of even
small signal details.

The Rigol DHO 800/900 Oscilloscope Series supports 16
digital channel capture, allowing analysis on both analog and
digital signals simultaneously to meet complex embedded
design and test tasks. Affordably priced, these scopes provide
auto serial and parallel bus analysis, Bode plot analysis, and

many other functions needed for today’s test demands in
R&D, education, and scientific research.

DHO800 Series Highlights
• Ultra-low noise floor, pure signal depiction, captures small signals
• Up to 12-bit resolution for all the models
• Analog bandwidth of 70MHz & 100MHz, 2 & 4 analog channels
• Max. real-time sample rate 1.25GSa/s
• Max. memory depth 25Mpts
• Vertical sensitivity range: 500µV/div to 10V/div
• Max. capture rate of 1,000,000wfms/s (in UltraAcquire mode)
• Digital phosphor display with real-time 256-level intensity grading
• Waveform search and navigation function
• 7″ (1024×600) capacitive multi-touch screen
• New user-friendly Flex Knob control
• USB Device & Host, LAN, and HDMI interfaces (std.) allows remote

control
• Additional DHO 900 Series Highlights
• 16 digital channels (std. but logic probe purchase is required)
• Max. real-time sample rate of 1.25GSa/s
• Max. memory depth 50Mpts
• Vertical sensitivity range: 200µV/div to 10V/div

Saelig | saelig.com

mailto:product-editor@circuitcellar.com
https://saelig.com
https://arterytek.com

circuitcellar.com 67
PRO

D
U

CT NEW
S

PRODUCT NEWS

NEW PRODUCT SUBMISSIONS— E-mail: product-editor@circuitcellar.com

Intel Reveals New 288-Core Sierra Forest CPU, Specifically Designed for
High-Density Servers

Intel has unveiled a formidable 288-core CPU, featuring
a dual-chiplet configuration with 144 cores on each die,
resulting in an impressive 288 cores and 288 threads.

The 288-core CPU, as part of the Sierra Forest lineup,
promises to deliver unparalleled processing capabilities
for data-intensive tasks, while the compatibility with the
Birch Stream platform opens the door for advanced server
configurations and scalability, setting the stage for more
efficient and powerful computing solutions. This move reflects
Intel’s dedication to innovation and
its ongoing efforts to address the
evolving needs of diverse sectors
within the technology landscape,
promising exciting developments on
the horizon for both consumers and
enterprise customers.

Intel has unveiled a formidable
288-core CPU, featuring a dual-chiplet
configuration with 144 cores on
each die, resulting in an impressive
288 cores and 288 threads. This
announcement positions Intel to
compete directly with AMD’s EPYC

Bergamo CPUs, known for offering up to 128 Zen 4C cores,
and Ampere’s 192-core AmpereOne processors, both of
which made their debut earlier this year. Notably, there is
speculation within the industry that Intel may even explore
the possibility of launching a tri-chiplet SKU with a staggering
432 cores, although the feasibility of such a technological
advancement remains uncertain and will undoubtedly draw
significant attention.

Intel’s latest offering in the form of the 288-core CPU
underscores the fierce competition
in the high-performance computing
market, with companies constantly
striving to push the boundaries of
core count and processing power. As
the technology landscape continues
to evolve, this development signifies
Intel’s commitment to staying at the
forefront of innovation, promising
exciting prospects for users in need of
unparalleled processing capabilities
for a wide range of demanding
applications.

Intel | intel.com

Sheba Microsystems Launches Revolutionary MEMS Autofocus
Actuator for Active Athermalization in Embedded Vision Cameras

Breakthrough µPistons technology uniquely solves decades-
long embedded vision camera industry’s problem of lens
thermal expansion. This novel product unlocks unparalleled
resolution and consistent high-quality imaging performance
for automotive, action, drone, mobile robotics, security and
surveillance, and machine vision cameras.

The first-of-its-kind solution tackles the long-standing
industry problem of embedded vision cameras’ inability to
maintain image quality and focus stability during temperature
fluctuations as optics undergo thermal expansion.

While smartphones use autofocus actuators and
electromagnetic actuators including voice coil motors
(VCMs), these actuators are unreliable for achieving active
athermalization in embedded vision cameras due to extreme
environmental conditions. Embedded vision camera optics are
also 30 times larger than smartphone optics. Other autofocus
systems in-market such as tunable lenses lack thermal stability
and compromise optical quality.

“MEMS actuators are fast, precise, and small in size, and
are actually uniquely suited to solve thermal expansion issues,
because they are thermally stable and maintain consistent
performance regardless of temperature changes,” said CEO
and co-founder Dr. Faez Ba-Tis, PhD. “Because of these known
advantages, there have been previous industry attempts at
incorporating MEMS actuators into cameras, but because
they failed drop tests they were quickly abandoned. Sheba’s
new design solves for all of these previous blockers, which
opens up limitless possibilities for embedded vision camera
innovation.”

Sheba’s proprietary technology
compensates for thermal expansion
by uniquely moving the lightweight
sensor, instead of moving the
lenses. The silicon-based MEMS
actuator platform actuates the
image sensor along the optical axis
to compensate for thermal expansion in the optics. The weight
of the image sensor represents only 2-3% of the optical lens
weight, which makes it easier to handle, enabling ultra-fast
and precise autofocus performance even when temperatures
fluctuate.

Sheba’s novel piston-tube electrode configuration takes
advantage of a larger capacitive area, allowing for substantial
stroke and increased force. Sheba’s µPistons design makes the
MEMS actuators uniquely resilient against severe shocks, since
the electrodes are well-supported and interconnected.

Sheba’s new MEMS actuator has successfully passed drop
tests as well as other reliability tests, including thermal shock,
thermal cycling, vibration, mechanical shock, drop, tumble, and
microdrop tests. It is also highly rugged, which helps maintain
image focus during high shocks in action cameras or machine
vision environments.

Sheba’s MEMS actuator offers lens design flexibility and is
suitable for near and far-field imaging. It is easily integrated
into existing systems and scaled up on mass production tools
for automotive, action, drone, mobile robotics, security and
surveillance, and machine vision cameras.

Sheba Microsystems | shebamicrosystems.ca

mailto:product-editor@circuitcellar.com
https://shebamicrosystems.ca
https://intel.com

CIRCUIT CELLAR • NOVEMBER 2023 #40068
PR

O
D

U
CT

 N
EW

S

PRODUCT NEWS by Kirsten Campbell

NEW PRODUCT SUBMISSIONS— E-mail: product-editor@circuitcellar.com

Dusun Introduces DSGW-290 IoT Edge Computing Gateway Specially Designed for
IoT Hardware Developers

The DSGW-290 Dusun Pi4 is a multifunctional IoT gateway
hub that supports multiple protocols: BLE/ZigBee/Z-Wave/Sub-G
to Wi-Fi/LTE/Ethernet.

Dusun has introduced a highly versatile smart home mini PC—
DSGW-290 smart home hub, featuring exceptional multimedia
processing capabilities suitable for both home and office media
centers and entertainment purposes. This mini PC also offers a
comprehensive selection of wireless protocol options, making it
an ideal candidate for use as a smart home hub.

It features a high-performance processor designed for
robust and reliable performance, the RK3568, equipped with
an independent NPU boasting an impressive 1T computing
capability.

The 64-bit quad-core Cortex-A55 processor, with a maximum
clock speed of 2.0GHz, ensures consistent and efficient data
processing for the DSGW-290. Includes
4GB of DDR4 RAM and 64GB of eMMC
storage, guaranteeing both speed and
stability for your devices. Option to insert
a TF card (up to 1TB) and an M.2 SSD (up
to 512GB) via the PCIe interface.

The DSGW-290 mini PC comes
fully equipped with a diverse range of
integrated wireless modules, featuring
Zigbee 3.0 (with optional Tuya Zigbee
support), Bluetooth 5.2 (BLE), Z-Wave,
Sub-GHz, Wi-Fi (2.4G/5G), and 4G LTE
Cat4 connectivity.

The DSGW-290 incorporates a GMAC Ethernet controller that
extends the capabilities with two RJ45 Gigabit Ethernet ports,
delivering a significant advantage in data transfer speed and
meeting the demands of high-speed networks. Simultaneously,
the presence of dual Gigabit Ethernet network ports enables
users to seamlessly transmit and access data within both
internal and external networks. Additionally, the DSGW-290
features a USB3.0 port, a USB2.0 port, and a Type-C port,
further enhancing its data transfer capabilities and enabling
faster data transfer speeds.

The DSGW-290 distinguishes itself as nearly pure computer
hardware, offering developers the flexibility to customize
firmware logic from the ground up. Users can select from a
range of operating systems, including Debian 11 and Android,
as well as leverage programming languages such as C, C++,

Python, and Java. The DSGW-290 runs on
a Linux-based operating system.

The DSGW-290 represents a significant
leap forward in the realm of smart
home technology. Delivering unmatched
multimedia processing capabilities, a
comprehensive suite of onboard wireless
modules for seamless connectivity, and
exceptional programmability allowing
for high customization, it stands as a
true pioneer in the world of smart home
mini PCs and hubs.

Dusun | dusuniot.com

AMD Introduces EPYC 8004-Series ‘Siena’ CPUs
AMD has unveiled EPYC 8004-series processors for edge

servers. Previously disclosed under the codename Siena, the
EPYC 8004 series is AMD’s low-cost sub-set of EPYC CPUs,
aimed at the telco, edge, and other price and efficiency-
sensitive marketing segments. Based on the same Zen4c cores
as Bergamo, Siena is essentially Bergamo-light, using the
same hardware to offer server processors with between 8 and
64 CPU cores. The new CPUs come in an all-new SP6 form-
factor, pack up to 64 Zen 4c cores, and feature a six-channel
DDR5 memory subsystem. AMD’s EPYC ‘Siena’ processors are
designed for edge and communications servers that rely on
one processor and require advanced I/O and power efficiency
more than raw performance.

“The new EPYC 8004 Series processors extend AMD
leadership in single socket platforms by offering excellent
CPU energy efficiency in a package tuned to meet the needs
of space and power-constrained infrastructure,” said Dan
McNamara, senior vice president and general manager, Server
Business, AMD.

Besides the reduced excitement that comes with the launch
of lower-end hardware, there is, strictly speaking, no new
silicon involved in this launch. Siena is comprised of the same
5nm Zen 4c core complex die (CCD) chiplets as Bergamo, which
are paired with AMD’s one and only 6nm EPYC I/O Die (IOD). As
a result, the EPYC 8004 family isn’t so much new hardware as
it is a new configuration of existing hardware—about half of a

Bergamo, give or take.
And that half Bergamo

analogy isn’t just about
CPU cores; it applies to
the rest of the platform
as well. Underscoring
the entry-level nature
of the Siena platform,
Siena ships with fewer
DDR5 memory channels
and fewer I/O lanes
than its faster, fancier
counterpart. Siena only
offers 6 channels of DDR5 memory, down from 12 channels for
other EPYC parts, and 96 lanes of PCIe Gen 5 instead of 128
lanes. As a result, while Siena is still a true Zen 4 part through
and through (right on down to AVX-512 support), it’s overall a
noticeably lighter-weight platform than the other EPYC family
members.

“AMD has delivered multiple generations of data center
processors that provide outstanding efficiency, performance,
and innovative features,” added McNamara. “Now with our 4th
Gen EPYC CPU portfolio complete, that leadership continues
across a broad set of workloads—from enterprise and cloud, to
intelligent edge, technical computing and more.”

AMD | amd.com

mailto:product-editor@circuitcellar.com
https://dusuniot.com
https://amd.com

circuitcellar.com 69

www.embeddedARM.com

TS-7100
Our smallest single board computer
measuring only 2.4" by 3.6" by 1.7"

NXP i.MX 6UL 696 MHz ARM CPU with FPU

$269
QTY 100

Starting at

IDEA BOX
The Directory of
PRODUCTS & SERVICES

AD FORMAT:
Advertisers must furnish digital files that meet our specifications (www.circuitcellar.com/mediakit).

All text and other elements MUST fit within a 2" x 3" format.
E-mail adcopy@circuitcellar.com with your file.

For current rates, deadlines, and more information contact
Hugh Heinsohn at 757-525-3677 or Hugh@circuitcellar.com.

C Workshop Compiler
For PIC® MCUs

Sales@ccsinfo.com
(262)522-6500 Ext. 35
www.ccsinfo.com/cc1023

Full support for 13 popular processors

Perfect for students, hobbyists, or those
looking to learn C for PIC® MCUs

Add an additional chip for $20

 C Workshop Compiler : ONLY $99!

Professional grade, feature rich compiler
for a fraction of the cost

444 built-in
functions

177 External
Peripheral Drivers

156 Example
Programs

1 Amazing Price

October_CC_C_Workshop_Compiler.indd 1 8/25/2023 8:24:13 AM

http://www.embeddedARM.com
http://www.circuitcellar.com/mediakit
mailto:adcopy@circuitcellar.com
mailto:Hugh@circuitcellar.com
mailto:Sales@ccsinfo.com
http://www.ccsinfo.com/cc1023
https://www.cc-webshop.com
https://www.cc-webshop.com
https://www.cc-webshop.com

CIRCUIT CELLAR • NOVEMBER 2023 #40070
TE

ST
S

YO
U

R
EQ

TEST YOUR EQ
Contributed by David Tweed

Problem 1—The classic two-transistor a stable
multivibrator is shown below. Typically, R2 and R3 have at
least 10 times the value of R1 and R4. This circuit oscillates,
with Q1 and Q2 turning on alternately. From the point in
time in a cycle where Q1 first switches on, describe what
happens until Q2 switches on.

Problem 2—What determines the time of one half-cycle
of the oscillation? Does this depend on VCC?

Problem 3—Recently, a different circuit appeared on the
web, shown below. Again, R2 and R3 are significantly larger
than R1 and R4. The initial reaction of one observer was
that this circuit can’t work, because there’s no DC bias path
for either transistor. Is this assessment correct?

Problem 4—What role do R2 and R3 play in this circuit?

Analog Soluuons for Baaery
Management Systems

microchip.com/BMS

https://microchip.com/bms

circuitcellar.com 71
TECH THE FUTURE

Advancements in Drone
RF Surveillance

Brandon Malatest
COO and Co-Founder of
Per Vices

The Future of RF Surveillance

Harnessing High Bandwidth and Wide Tuning
Range Software-Defined Radios (SDRs)

S oftware-defined radios (SDRs)
represent a paradigm shift in
wireless communication systems.
Unlike traditional radios, which rely

heavily on dedicated hardware components
to perform specific functions, SDRs leverage
software to control and configure radio
functions. This flexibility allows SDRs to
adapt to various communication standards,
frequency bands, and signal processing
techniques, making them a versatile solution
for modern wireless applications.

Drones have proven to be invaluable
tools for surveillance across a multitude of
industries. In the realm of RF surveillance,
drones equipped with specialized sensors
and SDRs can intercept and analyze wireless
signals emitted from various sources. These
sources can include communication devices,
Internet of Things (IoT) devices, and even
illicit transmitters. This capability makes
drones equipped with SDRs vital assets for
spectrum monitoring, threat detection, and
intelligence gathering with a specific focus
on the incorporation of high-bandwidth and
wide tuning range SDRs.

The integration of high-bandwidth
SDRs introduces an array of advantages,
empowering drones to capture and analyze
a broader range of frequencies than ever
before. These specific advantages include
improved signal detection, real-time analysis,
and spectrum mapping.

Improved Signal Detection: High-
bandwidth SDRs empower drones to capture
a wider range of frequencies simultaneously.
In the past, narrowband radios limited the
ability to monitor only specific frequencies
at a time. With high-bandwidth SDRs,
drones can now conduct comprehensive
spectrum analysis, identifying potential
threats and anomalous activities across
multiple frequency bands (Figure 1). This is
particularly advantageous in scenarios where

various wireless technologies coexist, such as
Wi-Fi, Bluetooth, cellular, and IoT.

Real-Time Analysis: Traditional RF
surveillance systems often required post-
processing of captured data for analysis.
High-bandwidth SDRs enable drones to
process and analyze complex RF signals in
real time using on-board field programmable
gate arrays (FPGAs). This immediate analysis
provides operators with actionable insights,
allowing them to swiftly respond to emerging
threats or anomalies. For example, a
drone equipped with a high-performance,
high-bandwidth SDR with on-board FPGA
for DSP can identify unauthorized drone
communication attempts in real time,
helping security personnel intervene before
any potential threat materializes.

Spectrum Mapping: Drones equipped with
high-bandwidth SDRs can create detailed
spectrum maps. These maps illustrate signal
strength and frequency distribution across
a geographical area. By identifying signal
congestions and dead zones, network operators
can optimize wireless deployments for better
coverage and performance. Additionally,
these maps aid in detecting unauthorized
transmissions and interference sources. For
instance, during a large event, a drone can
monitor signal congestion and ensure that
critical communications remain unaffected.

Similar to the benefits of high-bandwidth
SDRs outlined above, it is equally important

FIGURE 1
High-bandwidth SDRs allow drones to scan multiple bands of the frequency spectrum, shown here.

72 CIRCUIT CELLAR • NOVEMBER 2023 #400
TE

CH
 T

HE
 F

UT
UR

E

ABOUT THE COMPANY
Per Vices, a leader in software-defined radios, offers high-bandwidth and
wide tuning range SDRs for RF surveillance. Its high-performance radios
come with exceptional signal processing capabilities and advanced hardware
features, so that customers can leverage Per Vices’ SDRs to achieve superior
performance, enhanced flexibility, and extended capabilities. Contact
solutions@pervices.com to learn more about the different options available.

ABOUT THE AUTHOR
Brandon Malatest is the COO and co-founder of Per Vices Corporation,
a leader in software-defined radio technology. Brandon has an honor’s
degree in Physics with a specialization in Experimental Physics from the
University of Waterloo in Ontario, Canada. On graduating, Brandon started
his career as a research analyst and statistician at one of the largest
market research firms in Canada and later joined Victor Wollesen to co-
found Per Vices. Since starting Per Vices, Brandon has authored many
thought leadership articles based on software defined radio technology.

FIGURE 2
High-bandwidth, wide tuning
range SDRs like Per Vices Cyan
can improve drone-based RF
surveillance.

TDK μPOL™ DC-DC converters are compact and highly integrated

point-of-load converters for powering CPUs, MCUs, ASICs, FPGAs,

DSP, and other advanced digital logic devices, providing the high

performance, fast load transient response, and high accuracy voltage

regulation needed by these devices.

• Technology Includes Inductor, DC-DC regulator with MOSFETs and Driver

• Ultrathin: 3.3 mm x 3.3 mm x 1.5 mm or 4.9 mm x 5.8 mm x 1.6 mm

• Plug & Play (No Compensation Required)

• DC-DC Analog & Digital Bus Options (I2C / PMBus)

• Current Output: 3 A, 4 A, 6 A, 12 A

• Wide Input Voltage (up to 16 V)

• Adjustable Vout ±5m V

• Output Voltage, ±0.5% Initial accuracy

REGISTER FOR
A FREE µPOL
EVALUATION
BOARD
(Up to 5 winners)

A Simple Solution for High Power Density Applications

µPOL™ Chip-Embedded
Power Modules

www.tdk.com

to ensure the SDRs being utilized offer wide
tuning ranges. These systems offer additional
flexibility and interference mitigation along
with the use for covert operations.

Frequency Flexibility: Wide tuning range
SDRs provide drones with the ability to scan a
broad spectrum of frequencies. This flexibility
is crucial in scenarios where the frequency
of interest might change frequently. Whether
it’s monitoring licensed communication bands
or searching for rogue signals, wide tuning
range SDRs ensure that drones can adapt to
dynamic RF environments. This adaptability
is vital in situations like disaster response,
where communication frequencies may shift
due to damaged infrastructure.

Interference Mitigation: Drones equipped
with wide tuning range SDRs can identify
sources of interference and assess their impact
on communication systems. By pinpointing
interfering signals, operators can take proactive
measures to mitigate the effects of interference
and maintain the reliability of critical wireless
networks. For example, in urban areas with high
levels of electromagnetic interference, drones
can help pinpoint sources of interference,
enabling authorities to optimize signal
distribution and minimize service disruptions.

Covert Operations: The wide tuning
range of SDRs allows drones to intercept and
analyze signals across a range of frequencies,
including those that may be used for covert
communications or illicit activities. This makes
drones equipped with such SDRs essential
tools for law enforcement and security
agencies, enabling them to detect and counter
unauthorized communication attempts. In
scenarios where criminals use encrypted

communication on various frequencies, drones
with wide tuning range SDRs can help decode
and analyze such communications, aiding law
enforcement efforts.

While the benefits of using high-bandwidth
and wide tuning range SDRs for drone
RF surveillance are undeniable, there are
challenges to address. Power consumption
is a critical consideration, as processing
high-bandwidth signals demands substantial
energy. Efficient power management solutions,
and standard rack mount solutions optimized
for signal processing, are essential to extend
drone flight times.

Moreover, the complexity of signal
processing algorithms and data analysis must
be managed efficiently to ensure real-time
responsiveness. Advanced signal processing
techniques, including machine learning
and artificial intelligence, can aid in quickly
identifying patterns in intercepted signals
and distinguishing between legitimate and
potentially malicious activities.

The integration of high bandwidth and
wide tuning range SDRs in drone-based RF
surveillance marks a significant leap forward
in capabilities (Figure 2). These advancements
empower drones to efficiently detect, analyze,
and respond to diverse RF signals, making
them indispensable tools for spectrum
monitoring, threat detection, and intelligence
gathering. As technology continues to evolve,
the synergy between SDRs and drones is set
to reshape the landscape of RF surveillance,
unlocking new possibilities and enhancing our
ability to monitor and secure the wireless
world. Through effective collaboration,
innovation, and responsible deployment,
high-bandwidth and wide tuning range SDRs
promise to revolutionize the field of drone RF
surveillance, creating a safer and more
connected future. By addressing challenges
and leveraging the full potential of SDRs, the
integration of drones and RF surveillance
holds the promise of enhanced situational
awareness, improved communication
reliability, and a stronger foundation for
public safety and security.

RESOURCES
Per Vices | www.pervices.com

mailto:solutions@pervices.com
http://www.pervices.com

TDK μPOL™ DC-DC converters are compact and highly integrated

point-of-load converters for powering CPUs, MCUs, ASICs, FPGAs,

DSP, and other advanced digital logic devices, providing the high

performance, fast load transient response, and high accuracy voltage

regulation needed by these devices.

• Technology Includes Inductor, DC-DC regulator with MOSFETs and Driver

• Ultrathin: 3.3 mm x 3.3 mm x 1.5 mm or 4.9 mm x 5.8 mm x 1.6 mm

• Plug & Play (No Compensation Required)

• DC-DC Analog & Digital Bus Options (I2C / PMBus)

• Current Output: 3 A, 4 A, 6 A, 12 A

• Wide Input Voltage (up to 16 V)

• Adjustable Vout ±5m V

• Output Voltage, ±0.5% Initial accuracy

REGISTER FOR
A FREE µPOL
EVALUATION
BOARD
(Up to 5 winners)

A Simple Solution for High Power Density Applications

µPOL™ Chip-Embedded
Power Modules

www.tdk.com

http://www.tdk.com

��������������

Powered by the NXP i.MX6 SOC with the Arm® Cortex®-A9
core, the TS-7970 industrial Single Board Computer (SBC)
stands out from the crowd with its high performance
components, connectivity options, and multimedia
capabilities. It's a general purpose, low-power SBC ready
to tackle demanding applications including digital signage,
HMIs, data acquisition, Edge IoT, industrial automation,
and anything in between.

NXP i.MX6 Arm® Cortex®-A9 ARM CPU
Single Board Computer

TS-7970

800 MHz Solo or 1 GHz Quad Core Arm based CPU

1 to 2 GB DDR3 RAM

4 GB MLC eMMC Flash

SATA II, MiniCard, DIO, ADC, ModBus, USB, CAN

Multimedia Solution with HDMI, LVDS, and Audio I/O

https://embeddedts.com

circuitcellar.comcircuitcellar.com I
FEATU

RES

ByBy
 Wolfgang Matthes Wolfgang Matthes

S ometimes, digital or logic design tasks require more
than one gate, but are not so complex that a CPLD
or even an FPGA is deemed necessary. When small-
scale digital design is only an occasional challenge,

encompassing only a minor part of the total circuitry, one
may have concerns about the expenditures for a CPLD/FPGA
integrated development environment (IDE), programming
equipment, and so on. Thus, it may be expedient to resort
to traditional logic design. This is not just a matter of
tinkering. On the contrary, elementary logic circuitry is also

used in large-volume fields of use like automotive systems.
Consequently, semiconductor manufacturers offer a broad
portfolio of appropriate devices (Figures 1 to 5) [1-15].

Packages are, so to speak, a science in itself. There

Tiny or little logic components belong to the staple portfolio of
semiconductor manufacturers. For some special purposes, they
offer compelling advantages. Components that are barely visible
on the printed circuit board connect, for example, ASICs to
microcontrollers (MCUs), or allow a reduction in the pin count and
hence the cost of the more flashy ICs. Therefore, designing gate by
gate is not an outdated art. It is, however, different from the gate-
level design of the past. Here we give an overview of components,
design rationales, and particular solutions.

Employing Tiny LogicEmploying Tiny Logic
Designing Combinational Circuitry Designing Combinational Circuitry

FIGURE 3
Gates with three inputs. In tiny packages, only single devices are available.

FIGURE 2
Gates with two inputs. There are single and dual gates.

FIGURE 1
Buffers and inverters. One, two, or three of those devices are housed in one IC
package (single, dual, or triple devices).

FIGURE 4
Two examples of somewhat more complex devices. Above a 2-to-1 data selector/
multiplexer with Schmitt-trigger inputs (74AUP1T157), below a 2-to-4 line decoder
(74LVC1G139). The similar multiplexer 74AUP1T158 has an inverted output.

FIGURE 5
A few of the tiny IC packages (not to scale).

CIRCUIT CELLAR • NOVEMBER 2023 #400II
FE

AT
U

RE
S

are many package types around, the manufacturers have
different designations, suffixes, and trademarks, and they are
always busy inventing something new, making things smaller
and smaller. The latest types are indeed very tiny. They have
no leads, and the backsides are covered with solder contacts.
To give a first impression of what we’re talking about,
Figure 5 shows a few examples. Beyond that, refer to the
manufacturer’s catalogs, application notes, datasheets, and
cross-reference tables (see, for example, [2-4] and [7-14]).

The “tiny” or “little” IC series comprise sets of different
gates: AND, NAND, OR, NOR, XOR, and XNOR. Additionally,
there are multipurpose devices that can be configured
to perform the desired logic function. So, the problem of
implementing all the combinational functions by a single type
of gate does not exist (in contrast to the distant past, where
designers had to get by with only NANDs (TTL) or NORs (ECL)).
Designing with such components could be dubbed trickery in
the small. What is taught in introductory digital engineering
courses may not be that helpful. Therefore, we will not
proceed by explaining Karnaugh-Veitch diagrams and the like.
Devices with three-state outputs, flip-flops, analog switches,
and so on we have omitted here. Instead, we will concentrate
on straightforward combinational circuits.

A FEW APPLICATION EXAMPLES
Tiny logic solves small or straightforward logic tasks on

the spot. There is no talk of implementing arithmetic-logic
units (ALUs) or finite state machines (FSMs).

A simple application is patching, as illustrated in Figure 6.
A complex IC generates an output signal whose behavior
fits well with an input of another highly integrated device.
Unfortunately, the signal is generated active-Low, but the
input of the receiving IC is active-High. A tiny inverter is the
most straightforward solution to this problem.

Figure 7 depicts a long signal trace running across the
board. Such traces may pick up noise and may cause the
signal edges to deteriorate. The integrated circuit shown here
needs, however, a clean signal with steep edges. Think, for
example, of a clock or reset input. A tiny buffer, placed in the
near vicinity, would solve the problem. The alternative shown
concerns diagnostics and PCB testing. Here, a tiny multiplexer
allows for the injection of a diagnostic signal (think of clock
pulses excited by a tester or a service processor) if the
circuitry is switched to a diagnostic mode.

The example in Figure 8 concerns an application where
direct-acting (that is, non-programmable) hardwired logic is
a mandatory requirement. In case of an emergency, signals
are to be brought to determined levels. All further activities
are to be inhibited. Low levels can be enforced by AND gates,
high levels by OR gates.

FIGURE 6
A tiny inverter adapts an active-Low output to an active-High input.

FIGURE 8
Tiny gates enforce particular signal levels in case of an emergency.

FIGURE 7
Lengthy traces impede signal integrity. A tiny device in the near vicinity ensures
a clean signal at the IC’s input. If the signal’s edges are deteriorated, a buffer
with a Schmitt-trigger input is the obvious choice. The multiplexer beyond (the
device shown in Figure 4) is an alternative if diagnostics or PCB testing are to be
supported.

FIGURE 9
Particular conditions or bit patterns on signal lines are to be detected. It could be
done by a decoder in the FPGA or ASIC or by comparing read-in bit patterns by
software. This, however, requires connecting all signal lines, thus wasting precious
I/O pins (a). If the conditions are detected by external circuitry, only one or a few
pins are needed. Thus we could get by with an MCU, FPGA, or ASIC in a smaller
package (b).

a) b)

circuitcellar.com III
FEATU

RES

The package contributes crucially to the cost of a complex
integrated circuit. So it’s understandable to want to get by
with fewer pins and a package that’s less costly to purchase
and process. Occasionally, external circuitry can save on the
required number of pins considerably, as illustrated in Figure 9.

For example, some or even many sensor signals may be
OR-ed together to trigger an interrupt in a microcontroller
(MCU) (Figure 10a). A further example is detecting conditions
on signal lines for conditional branching or to trigger
interrupts. For that, we must implement so-called product
terms. That means AND-ing together the particular signals,
either true or inverted (Figure 10b).

To house this kind of circuitry, we may think of a CPLD or even
a low-cost FPGA. Occasionally, this approach is recommended
by manufacturers of programmable logic [46-48]. The obvious
advantages are that functional complexity is not restricted, and
you can master such tasks without being a seasoned digital
designer, at least in most cases. (I recommend resorting to
the Verilog hardware description language (HDL) and leaving
the rest to the IDE.) The benefits of tiny logic appear if only
straightforward combinational functions are to be implemented.
Then you will get by without HDL and IDE at all.

Figure 11 illustrates a further advantage. Imagine a
somewhat larger PCB with sensors (S) or other signal sources
spread over the total real estate. When all those signals are to
be OR-ed or AND-ed by a single CPLD or FPGA, all the signal
lines have to be routed to this device. Therefore, it could make
sense to also distribute the combinational circuitry over the
PCB, especially if cost is a primary concern and the number
of PCB layers should be kept as low as possible.

DESIGNING WITH TINY LOGIC
Our primary design challenges are twofold. The first is

to choose tiny components wisely. The second consists of
cascading such components so that more, or even many,
input signals can be attached. For both goals, the sharpest
tool in our box is DeMorgan’s law (Figure 12). There is an
uncountable number of sources that deal with Boolean algebra
and basic gate-level design. More often than not, however,
Boolean functions are not treated as tools for problem-solving
but solely as objects of minimization. I recommend looking
first into the technical documentation the semiconductor

FIGURE 10
An apparent advantage of the external combinational circuits is that we could get by
with an MCU in a cheaper package (that is, one with fewer pins).

FIGURE 11
Tiny logic may be dispersed over the printed circuit board (PCB). Here, sensors (S)
are shown. They are to be OR-ed together to trigger interrupts in the MCU. When
done in a CPLD, for example, all sensor signals must be routed to this device. When
spreading OR gates in the vicinity of the sensors, only a few traces need to be run
to the MCU.

FIGURE 12
DeMorgan’s law describes the so-called duality between AND, OR, the inversion of
the outputs, and the inversion of the inputs. AND and OR can be swapped against
each other, provided non-inverted signals are inverted and vice versa.

FIGURE 13
How basic gates act on active-Low signals.

CIRCUIT CELLAR • NOVEMBER 2023 #400IV
FE

AT
U

RE
S

manufacturers provide (like [4] or [52]), and not to begin with
college-level textbooks.

Capturing the problem and understanding the design
task: The problems to be solved are not that complicated.
Nevertheless, they must be understood in their intricate
details. A well-proven approach is to describe the problem as
painstakingly as possible using the terms AND, OR, and NOT.
This way, we will obtain at first colloquial and then formalized
Boolean expressions. They are to be implemented by our tiny
components. Mostly, it could be done best by assembling the
combinational circuits step by step from small basic gates,
without dealing with two-level canonical forms, Karnaugh-
Veitch diagrams (K-maps), and the like. A well-proven overall
approach is to first solve the pure logical design problem,
assuming that all types of tiny devices may be applied. The

levels and supply voltages, the IC families, packages, and so
on are dealt with in a second pass.

Logic levels and signals: Propositional logic knows only
two values. Applying them to digital design seems to be
the most straightforward thing on earth. Those values are,
however, to be assigned to the problem to be solved, and it’s
easy to mix something up, causing annoying design errors.
So be careful and better look once more. In the beginning,
we will assume that all is without a hitch. The supply voltage
(VCC), the Low and High levels, and the IC families fit well
together. The problems we will discuss later.

The logic levels are physical facts. If a level is nearer to
minus infinity (–∞), it is called Low; if nearer to plus infinity
(+∞), it is called High.

Propositional logic is concerned with truth. George Boole
has equated truth with 1 and falsehood with 0. In addition, 0
and 1 are the digits of binary numbers. If the 0 is represented
by the Low level and the 1 by the High level, we speak of
positive logic. The opposite assignment is called negative
logic.

FIGURE 14
Turning the 8051 into a v. Neumann machine where instructions and data are
located in the same address space can be done by two tiny devices, an AND gate,
and an inverter.

FIGURE 15
Positive (above) and negative (below) logic.

FIGURE 16
Inverted inputs will alter the function.

FIGURE 17
Some particular properties of the XOR and XNOR functions.

FIGURE 18
Extending the number of inputs by cascading.

FIGURE 19
Cascading by daisy-chaining.

circuitcellar.com IX
FEATU

RES

particular function, we begin with its truth table. The control
inputs of all AND gates that correspond to ones in the result
column are connected to High, the remaining to Low.

An ensemble of 2n AND gates, one for each bit pattern,
is essentially a decoder. So let us look for basic types of
components in which 2n product terms are readily decoded.
There are three such basic types, the binary (1-out-of-n)
decoder, the multiplexer, and the addressable memory.
Integrated decoders (like the venerable 74x138) contain

only the AND gates. OR-ing is to be done outside. Thus, for
practical reasons, the decoder-based solution may be omitted
here.

The multiplexer as a universal combinational building
block: The multiplexer is a combination of a data selector
and an address decoder. A multiplexer with n address inputs
selects one of the data inputs to be gated through to the
output. Thus, one can use a 2n-to-1 multiplexer to implement
any combinational function of n variables. It requires only
wiring the data inputs to Low or High, according to the result
column of the corresponding truth table (Figure 32). Thus,
the multiplexer becomes a small read-only memory (ROM). In
some FPGA families, the logic cells are implemented this way.
To be programmable, the multiplexer inputs are attached,
for example, to the flip-flops of a shift register or to flash
memory cells.

Unfortunately, the series of tiny logic components contain
no multiplexers with a useful number of inputs (4, 8, or even
16). Therefore, you must resort to components in larger
packages. Occasionally, analog multiplexers may work, too. If
break-before-make behavior is not guaranteed, I recommend
not wiring the inputs directly to VCC but applying the High
voltage via a pull-up resistor to limit eventual shoot-thru
currents.

The addressable memory—a universal combinational
building block: The memory cells are selected by addressing.
n address bits correspond to 2n memory cells. Referring to
the expansion theorem, the address decoder corresponds
to the AND gates, the stored bits correspond to the control
inputs, and the bit line implements the OR function. Thus,
implementing a combinational function requires nothing
more than storing the result column of the truth table.

The address inputs are connected to the input signals; the
memory cells are filled with ones or zeros according to the
truth table. In this way, any combinational function can be
implemented, limited only by the storage capacity.

In some FPGA families, the logic cells contain small
RAMs, the so-called lookup tables (LUTs), to implement the
combinational functions. Larger FPGAs also contain dedicated
RAM structures, like distributed RAMs (that are LUTs operated
as addressable RAMs instead of combinational circuits) and
block RAMs. In an example LUT, a RAM has a storage capacity
of 64 bits. Hence it can accommodate a combinational function
of 6 inputs. Dedicated RAMs can be configured for different
word lengths, for example, 16k x 1, 8k x 2, 4k x 4, and so
on. A 16k x 1 block RAM could accommodate a combinational
function of ld 16k = 14 inputs.

Outside the FPGAs, the principle of stored truth tables
can be implemented by ROMs with an asynchronous memory

interface, thus limiting the number of inputs
between, say, 8 to 20. Here we take it as a matter
of course that we want to get by with a simple
design and low cost.

The idea may occur to let a ROM absorb some
combinational functions that otherwise would
be spread over the PCB (Figure 33). There is,
however, a caveat. Memories with an asynchronous
interface are internally clocked devices. They have
sequencers built-in that detect when an address
or control signal changes its level. Then they
start a new access cycle. In the course of this
cycle, the data outputs may become temporarily

FIGURE 32
A Boolean function of three variables implemented by a multiplexer. Its address
decoder acts as the decoder depicted in Figure 31. Suitable devices are 74x151
8-to-1 multiplexers or 8-channel analog switches, like the NX3L4051 [36]; this
device guarantees break-before-make, so the inputs may be connected directly
to VCC.

FIGURE 33
A historical example of a ROM housing the truth tables of some combinational
functions. Thus, it substitutes a considerable number of gates. Some of the Boolean
equations are shown here, as they have been entered into the development system.
However, as straightforward as the design idea seems, there are some gotchas to
observe (which I had—decades ago—learned the hard way).

Family VCC range
Output
drive

Input
tolerance

IOFF
protection

AUP 0.8 to 3.6 V 4 mA 3.6 V Yes
AUC 0.8 to 2.7 V 8 mA 3.6 V Yes
LVC 1.65 to 5.5 V 24 mA 5.5 V Yes
AHC 2.0 to 5.5 V 8 mA 5.5 V Yes
LV1T 1.8 to 5.5 V 7 mA 5.5 V No

TABLE 1
Logic families comprising tiny gates (according to [2]).

circuitcellar.com V
FEATU

RES

Generally, there are two kinds of signals. The first carries
binary digits, ones or zeros. They have nothing to do with
truth, falsehood, activity, idleness, and the like, but are
simply two values of equal significance. Signals of the second
kind exert activities. The logic levels represent two states,
idle (or off or deasserted), and active (or on or asserted).
In this regard, we speak of signals that are active-Low or
active-High.

As a first example, Figure 13 shows how two active-Low
signals can be combined by AND, NAND, OR, and NOR gates.
If the output is to be active-Low, an AND gate acts as an OR
(Figure 13a), and an OR gate as an AND (Figure 13b). If the
output is to be active-High, a NAND is to be used instead of
the AND (c), and a NOR instead of an OR (d).

In one of the earliest applications of tiny logic, the AND
gate of Figure 13a is employed to turn the venerable 8051
microprocessor (MPU) into a von Neumann machine (Figure
14). Architecturally, the 8051 has separate memories for
programs and data (Harvard architecture). It is obvious to
store programs in the ROM and data in the RAM. In some
applications, however, it is desirable to have a unified
memory (von Neumann architecture). PSEN# signalizes that
instructions are to be fetched. RD# signalizes that data
bytes are to be read. To get access to both memories for
instructions as well as for data, a joint output enable (OE#)
signal is generated by OR-ing both low-active signals. To
select the ROM or the RAM, the highest-order address bit is
used here, requiring, in addition, a tiny inverter.

Positive and negative logic: An AND in positive logic
corresponds to an OR in negative logic and vice versa. The
same correspondence applies to NAND and NOR, as well as to
XOR and XNOR (Figure 15).

Gates with inverted inputs: If the inputs of a gate are
inverted or if inverted signals are applied, the gate’s function
will change according to DeMorgan’s law, as depicted in
Figure 16.

XOR and XNOR: XOR stands for exclusive OR; XNOR is an
XOR with the output inverted. An XOR gate with two inputs
signalizes inequality, and a corresponding XNOR signalizes
equality. In other words, the XNOR behaves as a single-bit
equality comparator. A positive logic XOR corresponds to
a negative logic XNOR and vice versa. Both gates can be
operated as controllable inverters (Figure 17). The output of
an XOR with an arbitrary number of inputs signalizes a one if
the number of ones at the inputs is odd (odd parity).

Cascading: Cascading means composing a gate with many
inputs from gates having few inputs. Non-inverting gates of
the same type can be cascaded easily (Figure 18a). To cascade
inverting gates, additional inverters must be interspersed
(Figure 18b). With the comprehensive assortment of gate
types available nowadays, the most straightforward solution
is to combine non-inverting and inverting gates (Figure 18c).

There are two basic topologies to cascade gates: the daisy
chain (Figure 19) and the inverted tree (Figure 20). For a
particular number of inputs, both need the same number
of gates. Only the propagation delay is different. In a daisy
chain, it increases linearly with the number of cascaded
gates. In the tree, it increases logarithmically. If propagation
delay is not that important, you may prefer the topology that
is most expedient for routing.

By using NAND and NOR gates and applying DeMorgan’s
law, you can implement AND, OR, NAND, and NOR functions
with an arbitrary number of inputs (Figure 21 and Figure 22).

FIGURE 20
Cascading by connecting the gates according to an inverted-tree topology.

FIGURE 21
Making good use of DeMorgan’s law. a) shows an AND, b) an OR with four inputs
each. NAND and NOR functions are obtained by not inverting the output.

FIGURE 22
An example of a DeMorgan tree. The AND shown here has 16 inputs. It consists of
two levels or layers of circuits according to Figure 21a. A similar structure, built
with circuits according to Figure 21b, would yield a corresponding OR gate.

CIRCUIT CELLAR • NOVEMBER 2023 #400VI
FE

AT
U

RE
S

A NOR corresponds to an AND of inverted signals. An AND with
many inputs can thus be implemented with NAND gates whose
outputs are connected to a NOR gate. A NAND corresponds to
an OR of inverted signals. An OR with many inputs can thus
be implemented by NOR gates whose outputs are connected
to a NAND gate. XORs are cascaded like non-inverting gates. A
wide XNOR can be built from cascaded XORs with an inverter
downstream.

To implement gate functions with even more inputs,
cascade an appropriate number of the circuits shown in Figure
21 (Figure 22). If all gates have two inputs, such so-called
DeMorgan trees may be built with four, 16, 64 (and so on)
inputs. Using gates with three inputs, the smallest DeMorgan
tree would have nine inputs. A two-level tree (similar to Figure
22) would have 81 inputs, and so on. (See, for example, [52]
for a comprehensive description of DeMorgan trees.)

AND-ing and OR-ing true (not inverted) and inverted
signals: Figure 23 depicts the problem together with the
solution. Some of the input signals are attached directly,
some are to be inverted. Typical applications are to detect
particular conditions, like a bit pattern on a data bus and
some control signals on, some off, or to combine sensor
signals, some of them active-High, others active-Low. The
solution follows from DeMorgan’s law. A NOR acts as an AND
of inverted variables, and a NAND as an OR. Thus, all input
signals to be inverted are connected to a NOR or NAND gate,
respectively.

Expanding with diodes: I discussed diode gates in
my previous article (“Solving Level-Translation and Logic
Problems: Using Discrete Components,” Circuit Cellar 395,
June 2023) [37]. Here, where only CMOS buffers or gates
are to be driven, the static load current may be neglected.
Occasionally, diodes could be a viable solution for expanding
the number of inputs (Figure 24). They are small and cheap,
and they need no power supply (GND/VCC) traces on the PCB.

The approach has, however, some caveats. A diode AND
increases the Low level, and a diode OR decreases the High
level by one forward voltage drop (VF). Because of the low
voltages, we cannot be as generous as in a 24V environment
(as done in [37]). The output levels of the diode gates must
comply with the input specification of the downstream device.

The low level must be well below VILmax, the high level well
above VIHmin. Due to their low forward voltage drop, Schottky
diodes are an obvious choice. On the other hand, if there are
more than a few diodes wired together, their reverse current
could be a problem. As a rule of thumb, Schottky diodes could
work in CMOS environments with supply voltages well above
2V. The example in Figure 24 illustrates that for a supply
voltage (VCC) of 2.5V and a VF of approximately 0.4V, the levels
of the Y output come dangerously near the specified ranges
of input levels of the downstream device. When contemplating
this solution, strive to keep VF low by selecting appropriate
components. Small-signal Schottkys may be a good choice
[33, 34]. They are also available in packages containing, for
example, two diodes (isolated or with the cathodes or anodes
connected). Bus termination arrays contain more diodes,
but their VF may be too high [35]. RL is to be dimensioned
according to (VCC – VF)/IF. Setting the diode’s forward current IF
is a compromise: not too high to keep VF low, but high enough
to ensure proper diode operation and sufficiently fast charging
and discharging of the parasitic capacitances (say, between
0.1mA and 1mA). The rise and fall times should be within the
limits of the downstream circuit’s specification. Beware that
Schmitt-trigger inputs may be no remedy here because their
high-to-low threshold voltage is considerably lower than VCC/2.
So, it’s wise not to neglect a worst-case analysis.

Logic by wiring: Open-drain outputs can be wired (dotted)
together (Figure 25). If at least one of the output transistors

FIGURE 24
Diode gates. a) AND; b) OR. The example on the right shows the influence of the
diode’s forward voltage, assuming worst-case output voltages of the upstream
gates and a VF of 0.4V. For the level specifications of the 2.5V logic, see Figure 34.

FIGURE 25
Wired (dotted) logic. a) Dotted active-High signals yield an AND function. b) If the
dottet signals are active-Low, a NOR results (colloquially called the wired-OR). c)
The AND function can be implemented by dotting AND gates. Inverting the output
yields a NAND. d) Dotting NAND gates results in an AND-OR-INVERT (AOI) Function.
Inverted, it is the sum-of-products (SOP) function.

FIGURE 23
True and inverted signals are to be AND-ed or OR-ed. Resorting to DeMorgan’s
law, we can save on inverters and get by with fewer components. a) shows how to
implement a minterm or product term, b) how to implement a maxterm.

circuitcellar.com VII
FEATU

RES

is switched on, the output level will be low. If all transistors
are switched off, the output level depends on the voltage
drop across the load resistor. Properly dimensioned, the
output voltage will remain in the region of the High level.
In a nutshell: Low is caused by the transistor switched on,
and High by the load resistor if the transistor is switched off.
The term “wired-OR” is widely known. It may be, however,
somewhat misleading. It is only correct when we speak of
negative logic or signals that are active-Low. If the output
is active-High, the circuit acts as a NOR. Concerning positive
logic or active-High inputs, the circuit behaves like an AND.

In tiny-logic IC series, the assortment of open-drain
devices comprises buffers (non-inverters), inverters, NAND
gates, and AND gates. The outputs are mostly specified for
voltages higher than VCC (for example, up to 3.6V or even above
5V). Therefore, such components may also be used for level
translation. Combinational functions with many inputs can
be implemented by wiring together (dotting) an appropriate
number of open-drain components. To implement a wired-
AND, active-High-signals are to be attached via AND gates or
non-inverters, active-Low signals via inverters. The wired-
OR function results if active-Low signals are attached via
non-inverters and active-High signals via inverters. Strictly
speaking, it is, however, a NOR because each active signal
will enforce a Low output. Dotted NAND gates yield an AND-
OR function with an inverted output, the so-called AND-OR-
INVERT (AOI) function.

Dimensioning the load Resistor RL: In general, this
problem has been discussed in my previous article [37].
Here, where only CMOS buffers or gates are to be driven, the
static load current may be neglected. More significant is that
the Low-to-High transitions are not too slow. This depends
on the RC time constant. Therefore, RL should be as low as
possible. As a rule of thumb that leaves a sound margin,
you may spend half of the rated Low-level output current
IOL of a driving upstream device. Thus, RL will be calculated

according to VCC divided by half of the datasheet value of IOL.
You may also contemplate getting by with a lower current
and compensate for the less steep Low-to-High edges by a
downstream Schmitt-trigger.

A straightforward example: Imagine a PCB similar
to Figure 11 and assume that 20 sensor outputs are to be
OR-ed to excite an interrupt input of an MCU. Let’s begin
with active-High sensor outputs. When cascading OR gates
with two inputs, 19 devices would be required. A diode-
OR would require 20 diodes, the load resistor, and a buffer
(with a Schmitt-trigger input, if appropriate). A wired-OR
would require 20 open-drain inverters, the load resistor, and
the final buffer (with a Schmitt-trigger input). If all sensor
outputs are active-Low, the desired OR function can be
implemented by cascading AND gates, by a diode-AND, or by
a wired-AND built with open-drain non-inverters. If there are
sensor outputs of both types, an appropriate solution should
be found by making good use of DeMorgan’s law. The wired-
OR is the most straightforward solution because it is only
necessary to select appropriate open-drain buffers, that is,
non-inverters for the active-Low and inverters for the active-
High sensors. Sensors with active-Low open-drain outputs

FIGURE 28
Configuration examples (1). The 1G57 [26]. The 1G58 [27] implements the inverted
function.

FIGURE 26
Two straightforward multipurpose devices [31] [32].

FIGURE 27
Examples of configurable multiple-function gates. They have Schmitt-trigger inputs
(that are not shown here).

CIRCUIT CELLAR • NOVEMBER 2023 #400VIII
FE

AT
U

RE
S

may be wired without additional buffering, provided their
output specifications permit.

CONFIGURABLE LOGIC
Semiconductor manufacturers offer some types of

tiny configurable gates that can be turned into inverters,
buffers, ANDs, ORs, and so on simply by connecting the pins
appropriately to signals, ground (= Low), or the supply voltage
(= High). Such components (configurable multiple-function
gates) can be used wherever straightforward combinational
functions are required. They combine some functions that
are often needed. In many applications, a configurable gate
replaces two or even more single gates. Another advantage
is that they can substitute single gates and so reduce the
inventory. We begin with two straightforward devices, shown
in Figure 26. Occasionally, such a 3-input function (AND-
OR or OR-AND) will come in handy. For example, an AND-
OR could be the last device downstream of cascaded gates
implementing a sum-of-products (SOP) function (like A ⋅ B
∨ C ⋅ D ⋅ E ∨…). Beyond that, the devices can substitute AND
gates, OR gates, and buffers. Because they lack inversion,
their versatility is, however, somewhat restricted.

The theoretical foundation of the more advanced
configurable devices are so-called lattices of Boolean
functions. Such a lattice results from a single Boolean
function by feeding each input with a signal, an inverted
signal, a Low level, or a High level. If the original function
has n inputs, we may imagine the entire lattice described

given by 4n truth tables corresponding to all the combinations
mentioned above. The obvious quick-and-dirty approach is to
try out all combinations. (Yes, complexity of the order 4n is
far from being quick, and the theory provides more elegant
approaches.) The real trick is to find universal Boolean
functions whose lattices contain as many usable functions
as possible. Additional combinational functions result from
making use of DeMorgan’s law. But you can’t have everything
at once. The manufacturers are primarily concerned with
getting by with a single package for many typical applications
that is also as small as possible.

The really universal component for all possible functions
of two variables would be a 4-to-1 multiplexer. That would,
however, require a larger package with at least 9 pins
(including GND and VCC). According to Boolean lattice theory, to
be fully universal occasionally requires inverting input signals.
To avoid separate inverters, the manufacturers offer some
devices in pairs, with the output and one of the inputs either
non-inverted or inverted (Figure 27). Figures 28 to 30 show a
few configuration examples. For more details and exhaustive
descriptions, we refer to the corresponding datasheets (for
example, [25-30]).

The pair 1G57/1G58 has an AND gate with two inverted
inputs. The corresponding AND gate of the pair 1G97/1G98
has only one inverted input. With the 1G57/1G58 you can build
XOR and XNOR gates, but not a 2-to-1 multiplexer; with the
1G97/1G98 it is the other way around. The 1G99 is basically
a 1G97 enhanced with an XOR gate and tri-state output. The
functions of the 1G97 or 1G98 can be emulated by wiring the
XOR input D to Low or High, respectively. In addition, the
circuit can be configured as an XOR or XNOR gate.

UNIVERSAL LOGIC
What we strive for are universal or general-purpose

integrated circuits to implement arbitrary combinational
functions. In contrast to CPLDs and FPGAs, however, they
should do without programming.

The theoretical foundation is Boole’s and Shannon’s
expansion theorem. On n signal lines, 2n different combinations
of Low and High levels may occur. For each of those
combinations, an AND gate—in other words, a product term—
is provided. Each of the 2n AND gates has an additional control
input. If this input is active, the AND gate will contribute to
the function to be implemented; otherwise, it will remain idle.
All AND gates are OR-ed together (Figure 31). To implement a

FIGURE 31
Boole’s and Shannon’s expansion theorem explained. How an arbitrary Boolean
function is mapped to a universal sum-of-products (SOP) function.

FIGURE 30
Configuration examples (3). The 1G99 [30]. The tri-state output is not shown here.
To enable the output, connect OE to GND.

FIGURE 29
Configuration examples (2). The 1G97 [28]. The 1G98 [29] implements the inverted
function.

CIRCUIT CELLAR • NOVEMBER 2023 #400X
FE

AT
U

RE
S

unstable. These oscillations affect all data outputs, regardless
of the combinational function they belong to. Think, for
example, of an AND function with the inputs A, B, C, and
other functions depending on input signals D, E, F, and so

on. Implemented with gates, the AND depending on A, B, C
will not be affected if, for example, the signal E switches.
In the ROM implementation, however, the AND output may
show pulses, although the AND function does not depend on
the input signal that has changed. On the other hand, ROM-
based lookup tables are an expedient solution for FSMs, code
conversion, trigonometric functions, and so on. What all such
applications have in common is that the stored words and
hence the output signals belong together and are subject to
synchronous operation.

Why not use an MCU?: Since the advent of the
microprocessor, emulating combinational circuitry has
occasionally been a topic in application notes [49-51]. When
microseconds do not matter, it could be a viable approach
because programming MCUs is a much more widespread
skill than CPLD/FPGA design. Moreover, there is no need
to purchase new development software, programming
equipment, and so on.

The most straightforward approach would be to store the
truth tables and let the MCU act like a ROM addressed by the
input signals (only slower, of course). Such a program must
read the input signals, assemble the memory address, read
the addressed truth table entry, and emit the output signals.
Bit processors, digital simulators, or even fully-fledged
Boolean machines belong to the more demanding projects.

SOME GENERAL DESIGN CONSIDERATIONS
Selecting the logic family: The components must fit into

the overall design. Above all, it relates to the supply voltage
and the logic levels (Table 1 and Figures 34, 35). Additional
stipulations to which we (as designers) must comply may
concern the IC family, power consumption, speed, packages,
soldering processes, testability guidelines, and so on.

When the gates are to be used in a circuit with different
supply voltages and logic levels, appropriate level-translation
solutions are to be found. For some design challenges, well-
suited components are readily available. So skim first the
catalogs and selection tables (on the Internet) before trying
to find a tricky solution on your own.

Partial power down: A problem may occur when the
supply voltage of particular functional units is switched off,
for example, to reduce power consumption. Our gates could
be without power in an otherwise powered environment
or vice versa. Voltages at the inputs of conventional CMOS
devices powered off (that is, with a VCC of 0V) may cause
short-circuit currents to flow. Provisions to prevent this are
called IOFF protection. Most of the low-voltage logic families
have this feature (as mentioned in Table 1).

Overvoltage-tolerant inputs: Overvoltage/input tolerance
means that the input voltage VIN may rise beyond the supply
voltage VCC. Typically, the limit is the rated maximum supply
voltage.

Voltage-level translation: Let us assume a particular
supply voltage (VCC). If the input voltage is lower, you
need a compliant device, or you will have to interpose a
level-translation circuit. If the input voltage is higher, you
should check whether your logic family tolerates it (Table 2,
Figure 36). Otherwise, you may resort to level-translation
devices or try some trickery, like current-limiting via series
resistors ([4] [40]).

General design rules: They are to be followed even when
the digital design task seems straightforward. Semiconductor

FIGURE 34
Logic level specifications at a glance (some minor differences neglected). TTL and
5-V CMOS are shown for reference.

FIGURE 35
Basic requirements for output and input levels. The downstream device should see
definite Low and High levels even when noise, ground bounce, and the like are
present. So, leave reasonable margins for the maximum Low and the minimum
High levels.

Additional materials from the author are available at:
www.circuitcellar.com/article-materials

References [1] to [59] as marked in the article along with
product and information sources can be found there.

RESOURCES
Nexperia | www.nexperia.com

NXP Semiconductors | www.nxp.com

Onsemi | www.onsemi.com

STMicroelectronics | www.st.com

Texas Instruments | www.ti.com

Toshiba | www.toshiba.com

http://www.circuitcellar.com/article-materials
http://www.nexperia.com
http://www.nxp.com
http://www.onsemi.com
http://www.st.com
http://www.ti.com
http://www.toshiba.com

circuitcellar.com XI
FEATU

RES

manufacturers provide ample literature to be studied ([52-
59] are only a few examples). The most basic rules concern
unused inputs, ground and power supply routing, and bypass
capacitors. Gross errors that beginners sometimes commit
are leaving unused inputs open, letting the auto-router handle
the ground and VCC traces like signals, and locating the bypass
capacitor far away from the integrated circuit, perhaps in the
opposite corner of the PCB.

Testability: When designing in earnest, that is, for
manufacturing in series, this aspect should not be neglected.
Especially if you contemplate somewhat tricky solutions, like
diode gates, open-gate outputs, or universal logic based on
multiplexers, ROMs, or even MCUs, you should team up early
with the test people.

SUMMARY AND SUGGESTIONS
Unassuming tiny components still play a significant role.

They support sophisticated MCUs, FPGAs, and ASICs. In some
design projects, where only minor digital problems are to be
solved, they may allow to get by without programmable logic,
like a CPLD or an FPGA, components which would require you
to purchase programming devices and development software.
Here we gave an overview of tiny gates and some characteristic
peculiarities of designing with them. Furthermore, we
discussed basic principles of configurable and universal logic
devices. The proposals of substituting gates with ROMs and
even MCUs seem to defy our intent not to program. Our
excuse is that such components are less costly than FPGAs
and that employing them requires only run-of-the-mill
computer programming skills without being familiar with
digital design, hardware description languages, and CPLD/
FPGA programming. The programmable universal Boolean
machine is a topic in itself (to be dealt with later).

FIGURE 36
A few hints on how to solve level-translation problems.

ABOUT THE AUTHOR
Wolfgang Matthes has developed peripheral subsystems
for mainframe computers and conducted research related
to special-purpose and universal computer architectures
for more than 20 years. He has also taught MCU Design,
Computer Architecture and Electronics (both digital and
analog) at the University of Applied Sciences in Dortmund,
Germany, since 1992. Wolfgang’s research interests include
advanced computer architecture and embedded systems
design. He has filed over 50 patent applications and
written seven books. (www.realcomputerprojects.dev and
www.controllersandpcs.de/projects).

Logic family,
characteristic feature

Direction Remarks

LV1T devices

Up:
1.2V to 1.8V
1.8V to 2.5V
1.8/2.5V to 3.3V
2.5/3.3V to 5.0V
Down:
2.5/3.3/5.0V to 1.8V
3.3/5.0V to 2.5V
5.0V to 3.3V

Output level corresponds to VCC between 1.8 to 5.0V
Up translation due to Schmitt-trigger inputs accepting
appropriately low input voltages as High levels.
Down translation due to overvoltage-tolerant inputs.

AUP1T devices

Up:
1.8/2.5V to 3.3V
1.8V to 2.5V
Down:
3.3V to 2.5V

Output level corresponds to VCC between 2.5 to 3.3V.
Principles of operation similar to VL1T, but reduced voltage
ranges.

Open-drain outputs Up and down
By connecting the load resistor to a supply voltage lower or
higher than the device’s VCC

Overvoltage-tolerant inputs Down The device tolerates input voltages higher than its VCC.

TABLE 2
Voltage-level translation by tiny devices (according to [45]).

http://www.realcomputerprojects.dev
http://www.controllersandpcs.de/projects

